Henry Korn holding the very first copy of Amerikan Krazy

Henry Korn holding the very first copy of Amerikan Krazy

Had a great lunch today with Henry James Korn who’s proudly holding a copy of his latest book.

Had a great lunch today with @henryjameskorn who's proudly holding a copy of his latest book.

Instagram filter used: Normal

Photo taken at: Porta Via Italian Foods

Syndicated copies to:

Amerikan Krazy Unboxing

Unboxing of a few cartons of the hardcover of Amerikan Krazy that arrived today for the book launch at Chevalier's Books next Wednesday!

A few cartons of the hardcover of Amerikan Krazy arrived today for the book launch at Chevalier’s Books next Wednesday!

I took a quick photo series of the unboxing of the copies.

This slideshow requires JavaScript.

If you haven’t RSVP’d for the reading and book signing, there’s still some room left. Please RSVP at Boffo Socko Books or on Facebook. I hope to see everyone at Chevalier’s Books on Wednesday at 7pm.

Can’t wait for Wednesday or want to read it before the book signing? You can buy the hardcover or e-book version on Amazon or wherever fine literature is sold.

 

Syndicated copies to:

Book Launch for Amerikan Krazy at Chevalier’s on March 2, 2016

Join me on March 2nd for the launch of Henry James Korn's novel Amerikan Krazy.

So, I’m publishing my first book. Not a book I wrote, mind you, but a book for which I’m the actual publisher

We’re throwing a party at Chevalier’s in Los Angeles to celebrate it. Henry James Korn, a brilliant writer—so good that I went to the trouble of publishing it myself rather than just selling it, as I’ve done so often in the past—will be doing a reading and signing on March 2nd. I hope you can all join us!

RSVP via Facebook or directly at <a href=”http://boffosockobooks.com/books/authors/henry-james-korn/amerikan-krazy/#appearances”” target=”_blank”>Boffo Socko Books.

If you have to miss the launch, you may be able to catch one of his other <a href=”http://boffosockobooks.com/books/authors/henry-james-korn/amerikan-krazy/#appearances”” target=”_blank”>upcoming book signings.

Syndicated copies to:

Introduction to Information Theory | SFI’s Complexity Explorer

The Santa Fe Institute's free online course "Introduction to Information Theory" taught by Seth Lloyd via Complexity Explorer.

Many readers often ask me for resources for delving into the basics of information theory. I hadn’t posted it before, but the Santa Fe Institute recently had an online course Introduction to Information Theory through their Complexity Explorer, which has some other excellent offerings. It included videos, fora, and other resources and was taught by the esteemed physicist and professor Seth Lloyd. There are a number of currently active students still learning and posting there.

Introduction to Information Theory

About the Tutorial:

This tutorial introduces fundamental concepts in information theory. Information theory has made considerable impact in complex systems, and has in part co-evolved with complexity science. Research areas ranging from ecology and biology to aerospace and information technology have all seen benefits from the growth of information theory.

In this tutorial, students will follow the development of information theory from bits to modern application in computing and communication. Along the way Seth Lloyd introduces valuable topics in information theory such as mutual information, boolean logic, channel capacity, and the natural relationship between information and entropy.

Lloyd coherently covers a substantial amount of material while limiting discussion of the mathematics involved. When formulas or derivations are considered, Lloyd describes the mathematics such that less advanced math students will find the tutorial accessible. Prerequisites for this tutorial are an understanding of logarithms, and at least a year of high-school algebra.

About the Instructor(s):

Professor Seth Lloyd is a principal investigator in the Research Laboratory of Electronics (RLE) at the Massachusetts Institute of Technology (MIT). He received his A.B. from Harvard College in 1982, the Certificate of Advanced Study in Mathematics (Part III) and an M. Phil. in Philosophy of Science from Cambridge University in 1983 and 1984 under a Marshall Fellowship, and a Ph.D. in Physics in 1988 from Rockefeller University under the supervision of Professor Heinz Pagels.

From 1988 to 1991, Professor Lloyd was a postdoctoral fellow in the High Energy Physics Department at the California Institute of Technology, where he worked with Professor Murray Gell-Mann on applications of information to quantum-mechanical systems. From 1991 to 1994, he was a postdoctoral fellow at Los Alamos National Laboratory, where he worked at the Center for Nonlinear Systems on quantum computation. In 1994, he joined the faculty of the Department of Mechanical Engineering at MIT. Since 1988, Professor Lloyd has also been an adjunct faculty member at the Sante Fe Institute.

Professor Lloyd has performed seminal work in the fields of quantum computation and quantum communications, including proposing the first technologically feasible design for a quantum computer, demonstrating the viability of quantum analog computation, proving quantum analogs of Shannon’s noisy channel theorem, and designing novel methods for quantum error correction and noise reduction.

Professor Lloyd is a member of the American Physical Society and the Amercian Society of Mechanical Engineers.

Tutorial Team:

Yoav Kallus is an Omidyar Fellow at the Santa Fe Institute. His research at the boundary of statistical physics and geometry looks at how and when simple interactions lead to the formation of complex order in materials and when preferred local order leads to system-wide disorder. Yoav holds a B.Sc. in physics from Rice University and a Ph.D. in physics from Cornell University. Before joining the Santa Fe Institute, Yoav was a postdoctoral fellow at the Princeton Center for Theoretical Science in Princeton University.

How to use Complexity Explorer: How to use Complexity Explore
Prerequisites: At least one year of high-school algebra
Like this tutorial? 


Syllabus

  1. Introduction
  2. Forms of Information
  3. Information and Probability
  4. Fundamental Formula of Information
  5. Computation and Logic: Information Processing
  6. Mutual Information
  7. Communication Capacity
  8. Shannon’s Coding Theorem
  9. The Manifold Things Information Measures
  10. Homework
Syndicated copies to:

Devourer of Encyclopedias: Stanislaw Lem’s “Summa Technologiae”

Devourer of Encyclopedias: Stanislaw Lem's "Summa Technologiae" (The Los Angeles Review of Books)
A review of Summa Technologiae by Stanislaw Lem by David Auerbach from the Los Angeles Review of Books.

Summa Technologiae

AT LAST WE have it in English. Summa Technologiae, originally published in Polish in 1964, is the cornerstone of Stanislaw Lem’s oeuvre, his consummate work of speculative nonfiction. Trained in medicine and biology, Lem synthesizes the current science of the day in ways far ahead of most science fiction of the time.

His subjects, among others, include:

  • Virtual reality
  • Artificial intelligence
  • Nanotechnology and biotechnology
  • Evolutionary biology and evolutionary psychology
  • Artificial life
  • Information theory
  • Entropy and thermodynamics
  • Complexity theory, probability, and chaos
  • Population and ecological catastrophe
  • The “singularity” and “transhumanism”

Source: Devourer of Encyclopedias: Stanislaw Lem’s “Summa Technologiae” – The Los Angeles Review of Books

I came across this book review quite serendipitously today via an Auerbach article in Slate, which I’ve bookmarked. I found a copy of the book and have added it to the top of my reading pile. As I’m currently reading an advance reader edition of Sean Carroll’s The Big Picture, I can only imagine how well the two may go together despite being written nearly 60 years apart.

Syndicated copies to:

Can a Field in Which Physicists Think Like Economists Help Us Achieve Universal Knowledge?

Can a Field in Which Physicists Think Like Economists Help Us Achieve Universal Knowledge? by David Auerbach (Slate Magazine)
The Theory of Everything and Then Some: In complexity theory, physicists try to understand economics while sociologists think like biologists. Can they bring us any closer to universal knowledge?

A discussion of complexity and complexity theorist John H. Miller’s new book: A Crude Look at the Whole: The Science of Complex Systems in Business, Life, and Society.

Syndicated copies to:

The Hidden Algorithms Underlying Life | Quanta Magazine

Searching for the Algorithms Underlying Life by John Pavlus (Quanta Magazine)
The biological world is computational at its core, argues computer scientist Leslie Valiant.

I did expect something more entertaining from Google when I searched for “what will happen if I squeeze a paper cup full of hot coffee?”

Syndicated copies to:

Global Language Networks

Recent research on global language networks has interesting relations to big history, complexity economics, and current politics.

Yesterday I ran across this nice little video explaining some recent research on global language networks. It’s not only interesting in its own right, but is a fantastic example of science communication as well.

I’m interested in some of the information theoretic aspects of this as well as the relation of this to the area of corpus linguistics. I’m also curious if one could build worthwhile datasets like this for the ancient world (cross reference some of the sources I touch on in relation to the Dickinson College Commentaries within Latin Pedagogy and the Digital Humanities) to see what influences different language cultures have had on each other. Perhaps the historical record could help to validate some of the predictions made in relation to the future?

The paper “Global distribution and drivers of language extinction risk” indicates that of all the variables tested, economic growth was most strongly linked to language loss.

This research also has some interesting relation to the concept of “Collective Learning” within the realm of a Big History framework via David Christian, Fred Spier, et al.  I’m curious to revisit my hypothesis: Collective learning has potentially been growing at the expense of a shrinking body of diverse language some of which was informed by the work of Jared Diamond.

Some of the discussion in the video is reminiscent to me of some of the work Stuart Kauffman lays out in At Home in the Universe: The Search for the Laws of Self-Organization and Complexity (Oxford, 1995). Particularly in chapter 3 in which Kauffman discusses the networks of life.  The analogy of this to the networks of language here indicate to me that some of Cesar Hidalgo’s recent work in Why Information Grows: The Evolution of Order, From Atoms to Economies (MIT Press, 2015) is even more interesting in helping to show the true value of links between people and firms (information sources which he measures as personbytes and firmbytes) within economies.

Finally, I can also only think about how this research may help to temper some of the xenophobic discussion that occurs in American political life with respect to fears relating to Mexican immigration issues as well as the position of China in the world economy.

Those intrigued by the video may find the website set up by the researchers very interesting. It contains links to the full paper as well as visualizations and links to the data used.

Abstract

Languages vary enormously in global importance because of historical, demographic, political, and technological forces. However, beyond simple measures of population and economic power, there has been no rigorous quantitative way to define the global influence of languages. Here we use the structure of the networks connecting multilingual speakers and translated texts, as expressed in book translations, multiple language editions of Wikipedia, and Twitter, to provide a concept of language importance that goes beyond simple economic or demographic measures. We find that the structure of these three global language networks (GLNs) is centered on English as a global hub and around a handful of intermediate hub languages, which include Spanish, German, French, Russian, Portuguese, and Chinese. We validate the measure of a language’s centrality in the three GLNs by showing that it exhibits a strong correlation with two independent measures of the number of famous people born in the countries associated with that language. These results suggest that the position of a language in the GLN contributes to the visibility of its speakers and the global popularity of the cultural content they produce.

Citation: Ronen S, Goncalves B, Hu KZ, Vespignani A, Pinker S, Hidalgo CA
Links that speak: the global language network and its association with global fame, Proceedings of the National Academy of Sciences (PNAS) (2014), 10.1073/pnas.1410931111

Related posts:

“A language like Dutch — spoken by 27 million people — can be a disproportionately large conduit, compared with a language like Arabic, which has a whopping 530 million native and second-language speakers,” Science reports. “This is because the Dutch are very multilingual and very online.”

Syndicated copies to: