🔖 Evidence for a limit to human lifespan | Nature Research

Evidence for a limit to human lifespan (nature.com)
Driven by technological progress, human life expectancy has increased greatly since the nineteenth century. Demographic evidence has revealed an ongoing reduction in old-age mortality and a rise of the maximum age at death, which may gradually extend human longevity. Together with observations that lifespan in various animal species is flexible and can be increased by genetic or pharmaceutical intervention, these results have led to suggestions that longevity may not be subject to strict, species-specific genetic constraints. Here, by analysing global demographic data, we show that improvements in survival with age tend to decline after age 100, and that the age at death of the world’s oldest person has not increased since the 1990s. Our results strongly suggest that the maximum lifespan of humans is fixed and subject to natural constraints.
X. Dong, B. Milholland, and J. Vijg, “Evidence for a limit to human lifespan.,” Nature, vol. 538, no. 7624, pp. 257–259, Oct. 2016. [PubMed]
Syndicated copies to:

🔖 Hayflick, his limit, and cellular ageing | Nature Reviews Molecular Cell Biology

Hayflick, his limit, and cellular ageing ( Nature Reviews Molecular Cell Biology)
Almost 40 years ago, Leonard Hayflick discovered that cultured normal human cells have limited capacity to divide, after which they become senescent — a phenomenon now known as the ‘Hayflick limit’. Hayflick's findings were strongly challenged at the time, and continue to be questioned in a few circles, but his achievements have enabled others to make considerable progress towards understanding and manipulating the molecular mechanisms of ageing.
J. Shay and W. Wright, “Hayflick, his limit, and cellular ageing.,” Nat Rev Mol Cell Biol, vol. 1, no. 1, pp. 72–6, Oct. 2000. [PubMed]
Syndicated copies to:

🔖 Thermodynamic Uncertainty Relation for Biomolecular Processes, Phys. Rev. Lett. 114, 158101 (2015)

Thermodynamic Uncertainty Relation for Biomolecular Processes (Phys. Rev. Lett. 114, 158101 (2015) - journals.aps.org)
Biomolecular systems like molecular motors or pumps, transcription and translation machinery, and other enzymatic reactions, can be described as Markov processes on a suitable network. We show quite generally that, in a steady state, the dispersion of observables, like the number of consumed or produced molecules or the number of steps of a motor, is constrained by the thermodynamic cost of generating it. An uncertainty ε requires at least a cost of 2k_B T/ε^2 independent of the time required to generate the output.
A. C. Barato and U. Seifert, “Thermodynamic Uncertainty Relation for Biomolecular Processes,” Physical Review Letters, vol. 114, no. 15. American Physical Society (APS), 15-Apr-2015 [Online]. Available: http://dx.doi.org/10.1103/PhysRevLett.114.158101 [Source]
Syndicated copies to:

🔖 Causal Entropic Forces, Phys. Rev. Lett. 110, 168702 (2013)

Causal Entropic Forces (Phys. Rev. Lett. 110, 168702 (2013) journals.aps.org )
Recent advances in fields ranging from cosmology to computer science have hinted at a possible deep connection between intelligence and entropy maximization, but no formal physical relationship between them has yet been established. Here, we explicitly propose a first step toward such a relationship in the form of a causal generalization of entropic forces that we find can cause two defining behaviors of the human “cognitive niche”—tool use and social cooperation—to spontaneously emerge in simple physical systems. Our results suggest a potentially general thermodynamic model of adaptive behavior as a nonequilibrium process in open systems.
A. D. Wissner-Gross and C. E. Freer, “Causal Entropic Forces,” Physical Review Letters, vol. 110, no. 16. American Physical Society (APS), 19-Apr-2013 [Online]. Available: http://dx.doi.org/10.1103/PhysRevLett.110.168702 [Source]


Syndicated copies to:

PBS NewsHour full episode Feb. 2, 2017

PBS NewsHour full episode Feb. 2, 2017 from PBS NewsHour
Thursday on the NewsHour, President Trump vows to drastically change the way church and state are separated during political campaigns. Also: What we know about a deadly raid by Navy SEALS in Yemen, how the president's aggressive approach affects world leaders, the economic hurdles to replacing Obamacare, a woman's mission to help girls in Liberia and a letter to U.S. presidents who owned slaves.

🔖 How Life (and Death) Spring From Disorder | Quanta Magazine

How Life (and Death) Spring From Disorder (Quanta Magazine)
Life was long thought to obey its own set of rules. But as simple systems show signs of lifelike behavior, scientists are arguing about whether this apparent complexity is all a consequence of thermodynamics.

This is a nice little general interest article by Philip Ball that does a relatively good job of covering several of my favorite topics (information theory, biology, complexity) for the layperson. While it stays relatively basic, it links to a handful of really great references, many of which I’ve already read, though several appear to be new to me. [1][2][3][4][5][6][7][8][9][10]

While Ball has a broad area of interests and coverage in his work, he’s certainly one of the best journalists working in this subarea of interests today. I highly recommend his work to those who find this area interesting.


E. Mayr, What Makes Biology Unique? Cambridge University Press, 2004.
A. Wissner-Gross and C. Freer, “Causal entropic forces.,” Phys Rev Lett, vol. 110, no. 16, p. 168702, Apr. 2013. [PubMed]
A. Barato and U. Seifert, “Thermodynamic uncertainty relation for biomolecular processes.,” Phys Rev Lett, vol. 114, no. 15, p. 158101, Apr. 2015. [PubMed]
J. Shay and W. Wright, “Hayflick, his limit, and cellular ageing.,” Nat Rev Mol Cell Biol, vol. 1, no. 1, pp. 72–6, Oct. 2000. [PubMed]
X. Dong, B. Milholland, and J. Vijg, “Evidence for a limit to human lifespan,” Nature, vol. 538, no. 7624. Springer Nature, pp. 257–259, 05-Oct-2016 [Online]. Available: http://dx.doi.org/10.1038/nature19793
H. Morowitz and E. Smith, “Energy Flow and the Organization of Life,” Santa Fe Institute, 07-Aug-2006. [Online]. Available: http://samoa.santafe.edu/media/workingpapers/06-08-029.pdf. [Accessed: 03-Feb-2017]
R. Landauer, “Irreversibility and Heat Generation in the Computing Process,” IBM Journal of Research and Development, vol. 5, no. 3. IBM, pp. 183–191, Jul-1961 [Online]. Available: http://dx.doi.org/10.1147/rd.53.0183
C. Rovelli, “Meaning = Information + Evolution,” arXiv, Nov. 2006 [Online]. Available: https://arxiv.org/abs/1611.02420
N. Perunov, R. A. Marsland, and J. L. England, “Statistical Physics of Adaptation,” Physical Review X, vol. 6, no. 2. American Physical Society (APS), 16-Jun-2016 [Online]. Available: http://dx.doi.org/10.1103/PhysRevX.6.021036 [Source]
S. Still, D. A. Sivak, A. J. Bell, and G. E. Crooks, “Thermodynamics of Prediction,” Physical Review Letters, vol. 109, no. 12. American Physical Society (APS), 19-Sep-2012 [Online]. Available: http://dx.doi.org/10.1103/PhysRevLett.109.120604 [Source]
Syndicated copies to:

📺 REESE’S Trap

REESE'S Trap from YouTube
Get caught up in the newest creation from REESE'S: the mighty REESE'S PIECES Peanut Butter Cup. The classic REESE'S Cup and REESE'S PIECES come together to form one awesome combination. It'll blow your mind by way of your mouth.

I can’t quite put my finger on it, but there’s something fun in this commercial. Perhaps it’s the unexpected whimsy of the Venus flytrap moment in combination with the music? It also looks far better in HD on a big screen…


Syndicated copies to:

Checkin In-N-Out

#1 Double-Double

Syndicated copies to: