The Information Theory of Life | Quanta Magazine

The Information Theory of Life by Kevin Hartnett (Quanta Magazine)
The Information Theory of Life: The polymath Christoph Adami is investigating life’s origins by reimagining living things as self-perpetuating information strings.

Syndicated copies to:

Why math? JHU mathematician on teaching, theory, and the value of math in a modern world | Hub

Why math? JHU mathematician on teaching, theory, and the value of math in a modern world (The Hub)

Great to see this interview with my friend and mathematician Richard Brown from Johns Hopkins Unviersity.  Psst: He’s got an interesting little blog, or you can follow some of his work on Facebook and Twitter.

Click through for the full interview: Q+A with Richard Brown, director of undergraduate studies in Johns Hopkins University’s Department of Mathematics


Syndicated copies to:

3 Rules of Academic Blogging

3 Rules of Academic Blogging (The Chronicle of Higher Education)
Not only is the form alive and well, but one of its most vibrant subsections is in academe.

1. Pick the right platform.
2. Write whatever you want.
3. Write for the sake of writing.

Syndicated copies to:

Winter Q-BIO Quantitative Biology Meeting February 15-18, 2016

Winter Q-BIO Quantitative Biology Meeting February 15-18, 2016 (
The Winter Q-BIO Quantitative Biology Meeting is coming up at the Sheraton Waikiki in Oahu, HI, USA

A predictive understanding of living systems is a prerequisite for designed manipulation in bioengineering and informed intervention in medicine. Such an understanding requires quantitative measurements, mathematical analysis, and theoretical abstraction. The advent of powerful measurement technologies and computing capacity has positioned biology to drive the next scientific revolution. A defining goal of Quantitative Biology (qBIO) is the development of general principles that arise from networks of interacting elements that initially defy conceptual reasoning. The use of model organisms for the discovery of general principles has a rich tradition in biology, and at a fundamental level the philosophy of qBIO resonates with most molecular and cell biologists. New challenges arise from the complexity inherent in networks, which require mathematical modeling and computational simulation to develop conceptual “guideposts” that can be used to generate testable hypotheses, guide analyses, and organize “big data.”

The Winter q-bio meeting welcomes scientists and engineers who are interested in all areas of q-bio. For 2016, the meeting will be hosted at the Sheraton Waikiki, which is located in Honolulu, on the island of Oahu. The resort is known for its breathtaking oceanfront views, a first-of-its-kind recently opened “Superpool” and many award-winning dining venues. Registration and accommodation information can be found via the links at the top of the page.

Source: Winter Q-BIO Quantitative Biology Meeting

Syndicated copies to:

The Mathematics Literature Project

The Mathematics Literature Project (

“The Mathematics Literature Project intends to survey the state of the freely accessible mathematics literature. In particular, it will index freely accessible URLs for mathematics articles. These are legitimately hosted copies of the article (i.e. at publishers, the arXiv, institutional repositories, or authors’ homepages), which are freely available in any browser, anywhere in the world.”

Syndicated copies to:

Obituary: Wes Craven

Wes Craven Dead: Movies 'Scream', 'Nightmare on Elm Street' Horrified Viewers (The Hollywood Reporter)
Wes Craven, the famed maestro of horror known for the Nightmare on Elm Street and Scream franchises, died Sunday after a battle with brain cancer. He was 76.

Saddened to  hear that filmmaker and fellow Johns Hopkins University alum Wes Craven has passed away this afternoon. He was certainly a scholar and a gentleman and will be missed terribly.

Obituary: Wes Craven, Horror Maestro, Dies at 76 – Hollywood Reporter 

Wes Craven
Wes Craven
Syndicated copies to:

Stephen Hawking says he’s solved a black hole mystery, but physicists await the proof

Stephen Hawking says he's solved a black hole mystery, but physicists await the proof by Eryn BrownEryn Brown (
Physicist Stephen Hawking made a splash this week when he announced that he had solved a vexing conundrum that had puzzled generations of leading physicists -- including the 73-year-old scientific superstar himself -- for the better part of a half-century.
Syndicated copies to:

Breaking the code | The Economist

Breaking the code (The Economist)
Brief book overview of Matthew Cobb's "Life’s Greatest Secret" from The Economist.

For those interested in some of the history behind genetics, evolution, biology and information theory, the following book, which I just saw the attached review in The Economist, is likely to be of interest:

Life’s Greatest Secret: The Story of the Race to Crack the Genetic Code. By Matthew Cobb. Basic Books; 434 pages; $29.99. Profile Books; £25.

In 1953 James Watson and Francis Crick, with the help of Rosalind Franklin and Maurice Wilkins, described the structure of the molecule at the heart of life. Deoxyribonucleic acid, better known as DNA, was, they said, a double helix, two spirals joined across the middle by pairs of four chemical bases, like a twisted ladder. That work earned Messrs Crick, Watson and Wilkins a Nobel prize and a place in the history books. The image of the double helix now often stands for biology, or even science, itself.

But this was merely the most visible breakthrough in a long struggle to understand the engine of life—how traits are inherited, mutated and weeded out by natural selection, and how the whole mysterious process works at the biochemical level. It is that lesser-known history that Matthew Cobb, a professor of animal behaviour at the University of Manchester, aims to sketch in his book, which has been shortlisted for the Royal Society’s Winton prize for science writing.

The result is a fascinating reminder of just how hard-won are the seemingly obvious facts of modern biology. The development of genetics was a tale of confusion, accident, frustration and the occasional flash of insight. It was, says Dr Cobb, as important as the Manhattan or Apollo projects, but with no government support and little money, carried out by scientists interested in the question for its own sake.

The researchers started from almost total ignorance. William Harvey, better known for describing the circulation of the blood, wondered in the 17th century what could explain why children’s skin colour was often a blend of their parents’, whereas they share a sex with only one, and can have an eye colour different from either.

In the late 19th century a monk, Gregor Mendel, established, through experiments on pea plants, the basic rules of inherited traits. A Danish biologist, Wilhelm Johannsen, coined the term “gene” in 1909 to describe whatever it was that Mendel had found. But as late as 1933 scientists were still debating whether genes were physical things or just useful abstractions, and how they could transmit traits. Scientists knew that DNA existed, but many considered it a boring bit of scaffolding in the cell. Proteins, which come in zillions of different varieties, were seen by many as the only things exciting enough to account for all the diversity seen in life.

After the second world war, ideas from information theory, arising out of wartime work on computers and automation, percolated into biology. Once the structure of DNA had been established, those ideas helped crack the problem of how the four chemical bases do their job. Proteins are built by stringing together 20 different sorts of amino acid. Strings of three bases within a DNA molecule represent these amino acids, but with 64 such triplets, there is much redundancy which information theory alone could not fully explain. Years of painstaking lab-work were needed to reconcile theory with reality.

Dr Cobb is good on the human side of the story, showing science as fuelled by rivalry, jealousy, competitiveness and wonder. The only downside is that he must marshal hundreds of scientists across several disciplines into around 300 pages of narrative. The results can sometimes be dense, and readers without a command of biological jargon will frequently find themselves consulting the glossary for guidance. But the cracking of the code of life is a great story, of which this is an accomplished telling.

Source: Breaking the code | The Economist, 


Life’s Greatest Secret

The Math That Connects Pluto to DNA — NOVA Next | PBS

The Math That Connects Pluto to DNA by Alex RileyAlex Riley (NOVA Next | PBS)
How a mathematical breakthrough from the 1960s now powers everything from spacecraft to cell phones.

Concurrent with the recent Pluto fly by, Alex Riley has a great popular science article on PBS that helps put the application of information theory and biology into perspective for the common person. Like a science version of “The Princess Bride”, this story has a little bit of everything that could be good and entertaining: information theory, biology, DNA, Reed-Solomon codes, fossils, interplanetary exploration, mathematics, music, genetics, computers, and even paleontology. Fans of Big History are sure to love the interconnections presented here.

Reed-Solomon codes correct for common transmission errors, including missing pixels (white), false signals (black), and paused transmissions (the white stripe).
Reed-Solomon codes correct for common transmission errors, including missing pixels (white), false signals (black), and paused transmissions (the white stripe).
Microscopic view of glass DNA storage beads
Syndicated copies to:

Molecular Programming Project

Molecular Programming Project (Molecular Programming Project)


“The Molecular Programming Project aims to develop computer science principles for programming information-bearing molecules like DNA and RNA to create artificial biomolecular programs of similar complexity. Our long-term vision is to establish molecular programming as a subdiscipline of computer science — one that will enable a yet-to-be imagined array of applications from chemical circuitry for interacting with biological molecules to nanoscale computing and molecular robotics.”

Source: MPP: Home

Syndicated copies to:

8th Annual North American School of Information Theory (NASIT)

8th Annual North American School of Information Theory (NASIT) (

August 10-13, 2015 – UC San Diego, La Jolla, California
Application deadline: June 7, 2015

The School of Information Theory will bring together over 100 graduate students, postdoctoral scholars, and leading researchers for four action-packed days of learning, stimulating discussions, professional networking and fun activities, all on the beautiful campus of the University of California, San Diego (UCSD) and in the nearby beach town of La Jolla.

  • Tutorials by some of the best known researchers in information theory and related fields
  • Poster presentations by student participants with feedback and discussion
  • Panel discussion on “IT: Academia vs. Industry Perspectives”
  • Social events and fun activities
Syndicated copies to:

BIRS Workshop: Advances and Challenges in Protein-RNA: Recognition, Regulation and Prediction (15w5063)

15w5063: Advances and Challenges in Protein-RNA: Recognition, Regulation and Prediction (Banff International Research Station |
BIRS 5 day worksop, arriving in Banff, Alberta Sunday, June 7 and departing Friday, June 12, 2015

In the years since the first assembly of the human genome, the complex and vital role of RNA and RNA binding proteins in regulation of the genome expression has expanded through the discovery of RNA-binding proteins and large classes of non-coding RNA that control many developmental decisions as part of protein- RNA complexes. Our molecular level understanding of RNA regulation has dramatically improved as many new structures of RNA–protein complexes have been determined and new sophisticated experimental technologies and dedicated computational modeling have emerged to investigate these interactions at the whole-genome level. Further deep insight on the molecular mechanisms that underline genome expression regulation is critical for understanding fundamental biology and disease progression towards the discovery of new approaches to interfere with disease progression.

The proposed workshop will bring together experts in RNA biology with structural biologists that focus on RNA-protein complexes, as well as computational biologists who seek to model and develop predictive tools based on the confluence of these experimental advances. The workshop intends to foster new collaborations between experimental and computational biologists and catalyze the development of new and improved technologies (such as single cell binding methods) that merge experimental analysis with novel mathematical and computational techniques to better understand the rules of protein-RNA recognition and RNA-based biological regulation.

The organizers of the workshop are both leaders in the field of protein-RNA recognition and interactions: Yael Mandel-Gutfreund has been working in the field of protein-Nucleic Acids interactions since 1994. Her main research interest is protein-RNA recognition and regulation. She has developed several tools and web servers for predicting RNA binding proteins and RNA binding motifs. Yael is the head to the computational molecular laboratory at the Technion and the president of the Israeli society of Bioinformatics and Computational Biology. Gabriele Varani has been working in the field of RNA structure and protein-RNA interactions since 1987. His main research interest is the structural basis for protein-RNA recognition and the prediction and design of RNA-binding proteins. He determined some of the first few structures of protein-RNA complexes and developed computational tools to analyze and predict the specificity of RNA -binding proteins. His group applies these tools to design RNA-binding proteins with new specificity to control gene expression. Our invitation to participate in the workshop has been met with great enthusiasm by the researchers. More than 20 principle investigators have already confirmed their interest in attending. Six of the confirmed participants are female scientists including the organizer Yael Mandel-Gutfreund as well as Traci Hall, Lynne Maquat, Elena Conti, Susan Jones, Drena Dobbs. We also have invited and confirmed the participation of young and promising researchers including Markus Landthaler, Gene Yeo, Jernej Ule, Uwe Ohler and others. Our confirmed participants come from many different countries: US, Canada, UK, Scotland, Germany, Spain, Switzerland, Poland and Israel. Two confirmed participants as well as the organizer have attended the BIRS workshops in the past.

A key objective of the workshop is to bring together researchers with experimental, mathematical and computational background to share results and discuss the main advances and challenges in the prediction, analysis and control of RNA-protein recognition and RNA-based regulation of gene expression. Towards this aim, we plan to adopt the format of previous BIRS meetings in which invited participants (including selected students) will present relatively short presentations of 20 minutes plus 10 minutes of active discussions. This format will leave aside ample time for informal discussions to foster exchanges between participants. To stress the collaborative, multidisciplinary nature of the workshop, we plan to dedicate each of the workshop sessions to a specific topic that will comprise presentations of structural, experimental and computational approaches, rather than create session focused on a particular approach. Each session we will include at least one lecture from a young scientist/postdoctoral fellow/student to be chosen among attendees by the organizers.

Suggested preliminary schedule:

  • Day 1: Modeling and high throughput approaches to genome-wide analysis of protein-RNA interactions
  • Day 2: Predicting and designing new RNA binding proteins
  • Day 3: Generating and modeling RNA-based regulatory networks
  • Day 4: Principles of RNA regulation by RNA binding proteins
  • Day 5: Conclusion round table discussion on the present and future challenges of the field
Syndicated copies to:

Richard Dawkins Interview: This Is My Vision Of “Life” |

This Is My Vision Of "Life" by John Brockman (
The's interview with Richard Dawkins.

Richard Dawkins [4.30.15]

“My vision of life is that everything extends from replicators, which are in practice DNA molecules on this planet. The replicators reach out into the world to influence their own probability of being passed on. Mostly they don’t reach further than the individual body in which they sit, but that’s a matter of practice, not a matter of principle. The individual organism can be defined as that set of phenotypic products which have a single route of exit of the genes into the future. That’s not true of the cuckoo/reed warbler case, but it is true of ordinary animal bodies. So the organism, the individual organism, is a deeply salient unit. It’s a unit of selection in the sense that I call a “vehicle”.  There are two kinds of unit of selection. The difference is a semantic one. They’re both units of selection, but one is the replicator, and what it does is get itself copied. So more and more copies of itself go into the world. The other kind of unit is the vehicle. It doesn’t get itself copied. What it does is work to copy the replicators which have come down to it through the generations, and which it’s going to pass on to future generations. So we have this individual replicator dichotomy. They’re both units of selection, but in different senses. It’s important to understand that they are different senses.”

Richard Dawkins
Richard Dawkins

RICHARD DAWKINS is an evolutionary biologist; Emeritus Charles Simonyi Professor of the Public Understanding of Science, Oxford; Author, The Selfish Gene; The Extended Phenotype; Climbing Mount Improbable; The God Delusion; An Appetite For Wonder; and (forthcoming) A Brief Candle In The Dark.

Watch the entire video interview and read the transcript at

Syndicated copies to:

Category Theory – the bedrock of mathematics? via Ilyas Khan | LinkedIn

Category Theory - the bedrock of mathematics ? by Ilyas KhanIlyas Khan (LinkedIn Pulse)

Category theory looks set to become the dominant foundational basis for all mathematics. It could, in fact, already have achieved that status through stealth.

Beauty, even in Maths, can exist in the eye of the beholder. That might sound a little surprising, when, after all, what could be more objective than mathematics when thinking about truth, and what, therefore, could be more natural than for beauty and goodness, the twin accomplices to truth, to be co-joined ?

In the 70 odd years since Samuel Eilenberg and Saunders Mac Lane published their now infamous paper “A General Theory of Natural Equivalences“, the pursuit of maths by professionals (I use here the reference point definition of Michael Harris – see his recent publication “Mathematics without Apologies“) has become ever more specialised. I, for one, don’t doubt cross disciplinary excellence is alive and sometimes robustly so, but the industrially specialised silos that now create, produce and then sustain academic tenure are formidable within the community of mathematicians.

Beauty, in the purest sense, does not need to be captured in a definition but recognised through intuition. Whether we take our inspiration from Hardy or Dirac, or whether we experience a gorgeous thrill when encountering an austere proof that may have been confronted thousands of times before, the confluence of simplicity and beauty in maths may well be one of the few remaining places where the commonality of the “eye” across a spectrum of different beholders remains at its strongest.

Neither Eilenberg nor Mac Lane could have thought that Category theory, which was their attempt to link topology and algebra, would become so pervasive or so foundational in its influence when they completed and submitted their paper in those dark days of WW 2. But then neither could Cantor, have dreamt about his work on Set theory being adopted as the central pillar of “modern” mathematics so soon after his death. Under attack from establishment figures such as Kronecker during his lifetime, Cantor would not have believed that set theory would become the central edifice around which so much would be constructed.

Of course that is exactly what has happened. Set theory and the ascending magnitude of infinities that were unleashed through the crack in the door that was represented by Cantor’s diagonal conquered all before them.

Until now, that is.

In an article in Science News, Julie Rehmeyer describes Category Theory as “perhaps the most abstract area of all mathematics” and “where math is the abstraction of the real world, category theory is an abstraction of mathematics”.

Slowly, without fanfare, and with an alliance built with the emergent post transistor age discipline of computer science, Category theory looks set to become the dominant foundational basis for all mathematics. It could, in fact, already have achieved that status through stealth. After all, if sets are merely an example of a category, they become suborned without question or query. One might even use the description ‘subsumed’.

There is, in parallel, a wide ranging discussion in mathematics about the so called Univalent Foundation that is most widely associated with Voevodsky which is not the same. The text book produced for the year long univalence programme iniated at the IAS that was completed in 2013 Homotopy type theory – Univalent Foundations Programme states:

“The univalence ax-iom implies, in particular, that isomorphic structures can be identified, a principle that mathematicians have been happily using on workdays, despite its incompatibility with the “official”doctrines of conventional foundations..”

before going on to present the revelatory exposition that Univalent Foundations are the real unifying binding agent around mathematics.

I prefer to think of Voevodsky’s agenda as being narrower in many crucial respects than Category Theory, although both owe a huge amount to the over-arching reach of computational advances made through the mechanical aid proffered through the development of computers, particularly if one shares Voevodsky’s view that proofs will eventually have to be subject to mechanical confirmation.

In contrast, the journey, post Russell, for type theory based clarificatory approaches to formal logic continues in various ways, but Category theory brings a unifying effort to the whole of mathematics that had to wait almost two decades after Eilenberg and Mac Lane’s paper when a then virtually unknown mathematician, William Lawvere published his now much vaunted “An Elementary Theory of the Category of Sets” in 1964. This paper, and the revolutionary work of Grothendieck (see below) brought about a depth and breadth of work which created the environment from which Category Theory emerged through the subsequent decades until the early 2000’s.

Lawvere’s work has, at times, been seen as an attempt to simply re-work set theory in Category theoretic terms. This limitation is no longer prevalent, indeed the most recent biographical reviews of Grothendieck, following his death, assume that the unificatory expedient that is the essential feature of Category theory (and I should say here not just ETCS) is taken for granted, axiomatic, even. Grothendieck eventually went much further than defining Category theory in set theoretic terms, with both Algebraic Topology and Mathematical Physics being fields that now could not be approached without a foundational setting that is Category theory. The early language and notation of Category Theory where categories ‘C’ are described essentially as sets whose members satisfy the conditions of composition, morphism and identity eventually gave way post Lawvere and then Lambek to a systematic adoption of the approach we now see where any and all deductive systems can be turned into categories. Most standard histories give due credit to Eilenberg and Mac Lane as well as Lawvere (and sometimes Cartan), but it is Grothendieck’s ‘Sur quelques points d’algebre homologique’ in 1957 that is now seen as the real ground breaker.

My own pathway to Category theory has been via my interest in Lie Groups, and more broadly, in Quantum Computing, and it was only by accident (the best things really are those that come about by accident !) that I decided I had better learn the language of Category theory when I found Lawvere’s paper misleadingly familiar but annoyingly distant when, in common with most people, I assumed that my working knowledge of notation in logic and in set theory would map smoothly across to Category theory. That, of course, is not the case, and it was only after I gained some grounding in this new language that I realised just how and why Category theory has an impact far beyond computer science. It is this journey that also brings me face to face with a growing appreciation of the natural intersection between Category theory and a Wittgensteinian approach to the Philosophy of Mathematics. Wittgenstein’s disdain for Cantor is well documented (this short note is not an attempt to justify, using Category theory, a Wittgensteinian criticism of set theory). More specifically however, it was Abramsky and Coecke’s “Categorical Quantum Mechanics” that helped me to discern more carefully the links between Category Theory and Quantum Computing. They describe Category Theory as the ‘language of modern structural mathematics’ and use it as the tool for building a mathematical representation of quantum processes, and their paper is a thought provoking nudge in the ribs for anyone who is trying to make sense of the current noise that surrounds Quantum mechanics.

Awodey and Spivak are the two most impressive contemporary mathematicians currently working on Category Theory in my view, and whilst it is asking for trouble to choose one or two selected works as exemplars of their approach, I would have to say that Spivak’s book on Category Theory for the Sciences is the standout work of recent times  (incidentally the section in this book on ‘aspects’ bears close scrutiny with Wittgenstein’s well known work on ‘family resemblances’).

Awodey’s 2003 paper is as good a recent balance between a mathematical and philosophical exposition of the importance of category theory as exists  whilst his textbook is often referred to as the standard entry point for working mathematicians.

Going back to beauty, which is how I started this short note. Barry Mazur wrote an article in memory of Saunders Mac Lane titled ‘When is one thing equal to another‘ which is a gem of rare beauty, and the actual catalyst for this short note. If you read only one document in the links from this article, then I hope it is Mazur’s paper.

Syndicated copies to: