🔖 Thermodynamic Uncertainty Relation for Biomolecular Processes, Phys. Rev. Lett. 114, 158101 (2015)

Thermodynamic Uncertainty Relation for Biomolecular Processes by Andre C. Barato and Udo Seifert (Phys. Rev. Lett. 114, 158101 (2015) - journals.aps.org)
Biomolecular systems like molecular motors or pumps, transcription and translation machinery, and other enzymatic reactions, can be described as Markov processes on a suitable network. We show quite generally that, in a steady state, the dispersion of observables, like the number of consumed or produced molecules or the number of steps of a motor, is constrained by the thermodynamic cost of generating it. An uncertainty ε requires at least a cost of 2k_B T/ε^2 independent of the time required to generate the output.
[1]
A. C. Barato and U. Seifert, “Thermodynamic Uncertainty Relation for Biomolecular Processes,” Physical Review Letters, vol. 114, no. 15. American Physical Society (APS), 15-Apr-2015 [Online]. Available: http://dx.doi.org/10.1103/PhysRevLett.114.158101 [Source]
Syndicated copies to: