🔖 The “Hard Problem” of Life by Sara Imari Walker & Paul C.W. Davies

The "Hard Problem" of Life by Sara Imari Walker, Paul C.W. Davies (arXiv)
Chalmer's famously identified pinpointing an explanation for our subjective experience as the "hard problem of consciousness". He argued that subjective experience constitutes a "hard problem" in the sense that its explanation will ultimately require new physical laws or principles. Here, we propose a corresponding "hard problem of life" as the problem of how `information' can affect the world. In this essay we motivate both why the problem of information as a causal agent is central to explaining life, and why it is hard - that is, why we suspect that a full resolution of the hard problem of life will, similar to as has been proposed for the hard problem of consciousness, ultimately not be reducible to known physical principles. Comments: To appear in "From Matter to Life: Information and Causality". S.I. Walker, P.C.W. Davies and G.F.R. Ellis (eds). Cambridge University Press
Syndicated copies to:

🔖 Origins of Life: A Problem for Physics

Origins of Life: A Problem for Physics by Sara I. Walker (arXiv)
The origins of life stands among the great open scientific questions of our time. While a number of proposals exist for possible starting points in the pathway from non-living to living matter, these have so far not achieved states of complexity that are anywhere near that of even the simplest living systems. A key challenge is identifying the properties of living matter that might distinguish living and non-living physical systems such that we might build new life in the lab. This review is geared towards covering major viewpoints on the origin of life for those new to the origin of life field, with a forward look towards considering what it might take for a physical theory that universally explains the phenomenon of life to arise from the seemingly disconnected array of ideas proposed thus far. The hope is that a theory akin to our other theories in fundamental physics might one day emerge to explain the phenomenon of life, and in turn finally permit solving its origins.
Syndicated copies to:

A new fossil could push back the start of life on Earth | The Economist

A new fossil could push back the start of life on Earth (The Atlantic)
The putative fossils formed just a few hundred million years after Earth itself

Continue reading “A new fossil could push back the start of life on Earth | The Economist”

Syndicated copies to:

IPAM Workshop on Regulatory and Epigenetic Stochasticity in Development and Disease, March 1-3

IPAM Workshop on Regulatory and Epigenetic Stochasticity in Development and Disease (Institute for Pure and Applied Mathematics, UCLA | March 1-3, 2017)
Epigenetics refers to information transmitted during cell division other than the DNA sequence per se, and it is the language that distinguishes stem cells from somatic cells, one organ from another, and even identical twins from each other. In contrast to the DNA sequence, the epigenome is relatively susceptible to modification by the environment as well as stochastic perturbations over time, adding to phenotypic diversity in the population. Despite its strong ties to the environment, epigenetics has never been well reconciled to evolutionary thinking, and in fact there is now strong evidence against the transmission of so-called “epi-alleles,” i.e. epigenetic modifications that pass through the germline.

However, genetic variants that regulate stochastic fluctuation of gene expression and phenotypes in the offspring appear to be transmitted as an epigenetic or even Lamarckian trait. Furthermore, even the normal process of cellular differentiation from a single cell to a complex organism is not understood well from a mathematical point of view. There is increasingly strong evidence that stem cells are highly heterogeneous and in fact stochasticity is necessary for pluripotency. This process appears to be tightly regulated through the epigenome in development. Moreover, in these biological contexts, “stochasticity” is hardly synonymous with “noise”, which often refers to variation which obscures a “true signal” (e.g., measurement error) or which is structural, as in physics (e.g., quantum noise). In contrast, “stochastic regulation” refers to purposeful, programmed variation; the fluctuations are random but there is no true signal to mask.

This workshop will serve as a forum for scientists and engineers with an interest in computational biology to explore the role of stochasticity in regulation, development and evolution, and its epigenetic basis. Just as thinking about stochasticity was transformative in physics and in some areas of biology, it promises to fundamentally transform modern genetics and help to explain phase transitions such as differentiation and cancer.

This workshop will include a poster session; a request for poster titles will be sent to registered participants in advance of the workshop.

Speaker List:
Adam Arkin (Lawrence Berkeley Laboratory)
Gábor Balázsi (SUNY Stony Brook)
Domitilla Del Vecchio (Massachusetts Institute of Technology)
Michael Elowitz (California Institute of Technology)
Andrew Feinberg (Johns Hopkins University)
Don Geman (Johns Hopkins University)
Anita Göndör (Karolinska Institutet)
John Goutsias (Johns Hopkins University)
Garrett Jenkinson (Johns Hopkins University)
Andre Levchenko (Yale University)
Olgica Milenkovic (University of Illinois)
Johan Paulsson (Harvard University)
Leor Weinberger (University of California, San Francisco (UCSF))

Syndicated copies to:

🔖 How Life (and Death) Spring From Disorder | Quanta Magazine

How Life (and Death) Spring From Disorder by Philip Ball (Quanta Magazine)
Life was long thought to obey its own set of rules. But as simple systems show signs of lifelike behavior, scientists are arguing about whether this apparent complexity is all a consequence of thermodynamics.

This is a nice little general interest article by Philip Ball that does a relatively good job of covering several of my favorite topics (information theory, biology, complexity) for the layperson. While it stays relatively basic, it links to a handful of really great references, many of which I’ve already read, though several appear to be new to me. [1][2][3][4][5][6][7][8][9][10]

While Ball has a broad area of interests and coverage in his work, he’s certainly one of the best journalists working in this subarea of interests today. I highly recommend his work to those who find this area interesting.


E. Mayr, What Makes Biology Unique? Cambridge University Press, 2004.
A. Wissner-Gross and C. Freer, “Causal entropic forces.,” Phys Rev Lett, vol. 110, no. 16, p. 168702, Apr. 2013. [PubMed]
A. Barato and U. Seifert, “Thermodynamic uncertainty relation for biomolecular processes.,” Phys Rev Lett, vol. 114, no. 15, p. 158101, Apr. 2015. [PubMed]
J. Shay and W. Wright, “Hayflick, his limit, and cellular ageing.,” Nat Rev Mol Cell Biol, vol. 1, no. 1, pp. 72–6, Oct. 2000. [PubMed]
X. Dong, B. Milholland, and J. Vijg, “Evidence for a limit to human lifespan,” Nature, vol. 538, no. 7624. Springer Nature, pp. 257–259, 05-Oct-2016 [Online]. Available: http://dx.doi.org/10.1038/nature19793
H. Morowitz and E. Smith, “Energy Flow and the Organization of Life,” Santa Fe Institute, 07-Aug-2006. [Online]. Available: http://samoa.santafe.edu/media/workingpapers/06-08-029.pdf. [Accessed: 03-Feb-2017]
R. Landauer, “Irreversibility and Heat Generation in the Computing Process,” IBM Journal of Research and Development, vol. 5, no. 3. IBM, pp. 183–191, Jul-1961 [Online]. Available: http://dx.doi.org/10.1147/rd.53.0183
C. Rovelli, “Meaning = Information + Evolution,” arXiv, Nov. 2006 [Online]. Available: https://arxiv.org/abs/1611.02420
N. Perunov, R. A. Marsland, and J. L. England, “Statistical Physics of Adaptation,” Physical Review X, vol. 6, no. 2. American Physical Society (APS), 16-Jun-2016 [Online]. Available: http://dx.doi.org/10.1103/PhysRevX.6.021036 [Source]
S. Still, D. A. Sivak, A. J. Bell, and G. E. Crooks, “Thermodynamics of Prediction,” Physical Review Letters, vol. 109, no. 12. American Physical Society (APS), 19-Sep-2012 [Online]. Available: http://dx.doi.org/10.1103/PhysRevLett.109.120604 [Source]
Syndicated copies to:

How Life Turns Asymmetric | Quanta Magazine

How Life Turns Asymmetric | Quanta Magazine by By Tim Vernimmen (quantamagazine.org)
Scientists are uncovering how our bodies — and everything within them — tell right from left.

Continue reading “How Life Turns Asymmetric | Quanta Magazine”

Syndicated copies to:

🔖 Emerging Frontiers of Neuroengineering: A Network Science of Brain Connectivity

Emerging Frontiers of Neuroengineering: A Network Science of Brain Connectivity by Danielle S. Bassett, Ankit N. Khambhati, Scott T. Grafton (arxiv.org)
Neuroengineering is faced with unique challenges in repairing or replacing complex neural systems that are composed of many interacting parts. These interactions form intricate patterns over large spatiotemporal scales, and produce emergent behaviors that are difficult to predict from individual elements. Network science provides a particularly appropriate framework in which to study and intervene in such systems, by treating neural elements (cells, volumes) as nodes in a graph and neural interactions (synapses, white matter tracts) as edges in that graph. Here, we review the emerging discipline of network neuroscience, which uses and develops tools from graph theory to better understand and manipulate neural systems, from micro- to macroscales. We present examples of how human brain imaging data is being modeled with network analysis and underscore potential pitfalls. We then highlight current computational and theoretical frontiers, and emphasize their utility in informing diagnosis and monitoring, brain-machine interfaces, and brain stimulation. A flexible and rapidly evolving enterprise, network neuroscience provides a set of powerful approaches and fundamental insights critical to the neuroengineer's toolkit.

17 pages, 6 figures. Manuscript accepted to the journal Annual Review of Biomedical Engineering [1]


D. Bassett S., A. Khambhati N., and S. Grafton T., “Emerging Frontiers of Neuroengineering: A Network Science of Brain Connectivity,” arXiv, 23-Dec-2016. [Online]. Available: https://arxiv.org/abs/1612.08059. [Accessed: 03-Jan-2017]
Syndicated copies to:

Statistical Physics, Information Processing, and Biology Workshop at Santa Fe Institute

Information Processing and Biology by John Carlos Baez (Azimuth)
The Santa Fe Institute, in New Mexico, is a place for studying complex systems. I’ve never been there! Next week I’ll go there to give a colloquium on network theory, and also to participate in this workshop.

I just found out about this from John Carlos Baez and wish I could go! How have I not managed to have heard about it?

Stastical Physics, Information Processing, and Biology


November 16, 2016 – November 18, 2016
9:00 AM
Noyce Conference Room

This workshop will address a fundamental question in theoretical biology: Does the relationship between statistical physics and the need of biological systems to process information underpin some of their deepest features? It recognizes that a core feature of biological systems is that they acquire, store and process information (i.e., perform computation). However to manipulate information in this way they require a steady flux of free energy from their environments. These two, inter-related attributes of biological systems are often taken for granted; they are not part of standard analyses of either the homeostasis or the evolution of biological systems. In this workshop we aim to fill in this major gap in our understanding of biological systems, by gaining deeper insight in the relation between the need for biological systems to process information and the free energy they need to pay for that processing.

The goal of this workshop is to address these issues by focusing on a set three specific question:

  1. How has the fraction of free energy flux on earth that is used by biological computation changed with time?;
  2. What is the free energy cost of biological computation / function?;
  3. What is the free energy cost of the evolution of biological computation / function.

In all of these cases we are interested in the fundamental limits that the laws of physics impose on various aspects of living systems as expressed by these three questions.

Purpose: Research Collaboration
SFI Host: David Krakauer, Michael Lachmann, Manfred Laubichler, Peter Stadler, and David Wolpert

Syndicated copies to:

NIMBioS Tutorial: Evolutionary Quantitative Genetics 2016

NIMBioS Tutorial: Evolutionary Quantitative Genetics 2016 by NIMBioS (nimbios.org)
This tutorial will review the basics of theory in the field of evolutionary quantitative genetics and its connections to evolution observed at various time scales. Quantitative genetics deals with the inheritance of measurements of traits that are affected by many genes. Quantitative genetic theory for natural populations was developed considerably in the period from 1970 to 1990 and up to the present, and it has been applied to a wide range of phenomena including the evolution of differences between the sexes, sexual preferences, life history traits, plasticity of traits, as well as the evolution of body size and other morphological measurements. Textbooks have not kept pace with these developments, and currently few universities offer courses in this subject aimed at evolutionary biologists. There is a need for evolutionary biologists to understand this field because of the ability to collect large amounts of data by computer, the development of statistical methods for changes of traits on evolutionary trees and for changes in a single species through time, and the realization that quantitative characters will not soon be fully explained by genomics. This tutorial aims to fill this need by reviewing basic aspects of theory and illustrating how that theory can be tested with data, both from single species and with multiple-species phylogenies. Participants will learn to use R, an open-source statistical programming language, to build and test evolutionary models. The intended participants for this tutorial are graduate students, postdocs, and junior faculty members in evolutionary biology.

Syndicated copies to:

How Can We Apply Physics to Biology?

How Can We Apply Physics to Biology? by Philip Ball (nautil.us)
We don’t yet know quite what a physics of biology will consist of. But we won’t understand life without it.

This is an awesome little article with some interesting thought and philosophy on the current state of physics within biology and other related areas of study. It’s also got some snippets of history which aren’t frequently discussed in longer form texts.

Syndicated copies to:

Devourer of Encyclopedias: Stanislaw Lem’s “Summa Technologiae”

Devourer of Encyclopedias: Stanislaw Lem's "Summa Technologiae" (The Los Angeles Review of Books)
A review of Summa Technologiae by Stanislaw Lem by David Auerbach from the Los Angeles Review of Books.

Summa Technologiae

AT LAST WE have it in English. Summa Technologiae, originally published in Polish in 1964, is the cornerstone of Stanislaw Lem’s oeuvre, his consummate work of speculative nonfiction. Trained in medicine and biology, Lem synthesizes the current science of the day in ways far ahead of most science fiction of the time.

His subjects, among others, include:

  • Virtual reality
  • Artificial intelligence
  • Nanotechnology and biotechnology
  • Evolutionary biology and evolutionary psychology
  • Artificial life
  • Information theory
  • Entropy and thermodynamics
  • Complexity theory, probability, and chaos
  • Population and ecological catastrophe
  • The “singularity” and “transhumanism”

Source: Devourer of Encyclopedias: Stanislaw Lem’s “Summa Technologiae” – The Los Angeles Review of Books

I came across this book review quite serendipitously today via an Auerbach article in Slate, which I’ve bookmarked. I found a copy of the book and have added it to the top of my reading pile. As I’m currently reading an advance reader edition of Sean Carroll’s The Big Picture, I can only imagine how well the two may go together despite being written nearly 60 years apart.

Syndicated copies to:

What is Information? by Christoph Adami

What is Information? [1601.06176] by Christoph Adami (arxiv.org)
Information is a precise concept that can be defined mathematically, but its relationship to what we call "knowledge" is not always made clear. Furthermore, the concepts "entropy" and "information", while deeply related, are distinct and must be used with care, something that is not always achieved in the literature. In this elementary introduction, the concepts of entropy and information are laid out one by one, explained intuitively, but defined rigorously. I argue that a proper understanding of information in terms of prediction is key to a number of disciplines beyond engineering, such as physics and biology.

A proper understanding of information in terms of prediction is key to a number of disciplines beyond engineering, such as physics and biology.

Comments: 19 pages, 2 figures. To appear in Philosophical Transaction of the Royal Society A
Subjects: Adaptation and Self-Organizing Systems (nlin.AO); Information Theory (cs.IT); Biological Physics (physics.bio-ph); Quantitative Methods (q-bio.QM)
Cite as:arXiv:1601.06176 [nlin.AO] (or arXiv:1601.06176v1 [nlin.AO] for this version)

From: Christoph Adami
[v1] Fri, 22 Jan 2016 21:35:44 GMT (151kb,D) [.pdf]

Source: Christoph Adami [1601.06176] What is Information? on arXiv

Syndicated copies to:

Donald Forsdyke Indicates the Concept of Information in Biology Predates Claude Shannon

In the 1870s Ewald Hering in Prague and Samuel Butler in London laid the foundations. Butler's work was later taken up by Richard Semon in Munich, whose writings inspired the young Erwin Schrodinger in the early decades of the 20th century.

As it was published, I had read Kevin Hartnett’s article and interview with Christoph Adami The Information Theory of Life in Quanta Magazine. I recently revisited it and read through the commentary and stumbled upon an interesting quote relating to the history of information in biology:

Polymath Adami has ‘looked at so many fields of science’ and has correctly indicated the underlying importance of information theory, to which he has made important contributions. However, perhaps because the interview was concerned with the origin of life and was edited and condensed, many readers may get the impression that IT is only a few decades old. However, information ideas in biology can be traced back to at least 19th century sources. In the 1870s Ewald Hering in Prague and Samuel Butler in London laid the foundations. Butler’s work was later taken up by Richard Semon in Munich, whose writings inspired the young Erwin Schrodinger in the early decades of the 20th century. The emergence of his text – “What is Life” – from Dublin in the 1940s, inspired those who gave us DNA structure and the associated information concepts in “the classic period” of molecular biology. For more please see: Forsdyke, D. R. (2015) History of Psychiatry 26 (3), 270-287.

Donald Forsdyke, bioinformatician and theoretical biologist
in response to The Information Theory of Life in Quanta Magazine on

These two historical references predate Claude Shannon’s mathematical formalization of information in A Mathematical Theory of Communication (The Bell System Technical Journal, 1948) and even Erwin Schrödinger‘s lecture (1943) and subsequent book What is Life (1944).

For those interested in reading more on this historical tidbit, I’ve dug up a copy of the primary Forsdyke reference which first appeared on arXiv (prior to its ultimate publication in History of Psychiatry [.pdf]):

🔖 [1406.1391] ‘A Vehicle of Symbols and Nothing More.’ George Romanes, Theory of Mind, Information, and Samuel Butler by Donald R. Forsdyke  [1]
Submitted on 4 Jun 2014 (v1), last revised 13 Nov 2014 (this version, v2)

Abstract: Today’s ‘theory of mind’ (ToM) concept is rooted in the distinction of nineteenth century philosopher William Clifford between ‘objects’ that can be directly perceived, and ‘ejects,’ such as the mind of another person, which are inferred from one’s subjective knowledge of one’s own mind. A founder, with Charles Darwin, of the discipline of comparative psychology, George Romanes considered the minds of animals as ejects, an idea that could be generalized to ‘society as eject’ and, ultimately, ‘the world as an eject’ – mind in the universe. Yet, Romanes and Clifford only vaguely connected mind with the abstraction we call ‘information,’ which needs ‘a vehicle of symbols’ – a material transporting medium. However, Samuel Butler was able to address, in informational terms depleted of theological trappings, both organic evolution and mind in the universe. This view harmonizes with insights arising from modern DNA research, the relative immortality of ‘selfish’ genes, and some startling recent developments in brain research.

Comments: Accepted for publication in History of Psychiatry. 31 pages including 3 footnotes. Based on a lecture given at Santa Clara University, February 28th 2014, at a Bannan Institute Symposium on ‘Science and Seeking: Rethinking the God Question in the Lab, Cosmos, and Classroom.’

The original arXiv article also referenced two lectures which are appended below:

[Original Draft of this was written on December 14, 2015.]


D. Forsdyke R., “‘A vehicle of symbols and nothing more’. George Romanes, theory of mind, information, and Samuel Butler,” History of Psychiatry, vol. 26, no. 3, Aug. 2015 [Online]. Available: http://journals.sagepub.com/doi/abs/10.1177/0957154X14562755
Syndicated copies to:

Quantum Biological Information Theory by Ivan B. Djordjevic | Springer

Quantum Biological Information Theory by Ivan B. Djordjevic (Springer, 2015)

Springer recently announced the publication of the book Quantum Biological Information Theory by Ivan B. Djordjevic, in which I’m sure many readers here will have interest. I hope to have a review of it shortly after I’ve gotten a copy. Until then…

From the publisher’s website:

This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects.

  • Integrates quantum information and quantum biology concepts;
  • Assumes only knowledge of basic concepts of vector algebra at undergraduate level;
  • Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology;
  • Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models on tumor and cancer development, quantum modeling of bird navigation compass, quantum aspects of photosynthesis, quantum biological error correction.

Source: Quantum Biological Information Theory | Ivan B. Djordjevic | Springer

9783319228150I’ll note that it looks like it also assumes some reasonable facility with quantum mechanics in addition to the material listed above.

Springer also has a downloadable copy of the preface and a relatively extensive table of contents for those looking for a preview. Dr. Djordjevic has been added to the ever growing list of researchers doing work at the intersection of information theory and biology.

Syndicated copies to:

The Information Theory of Life | Quanta Magazine

The Information Theory of Life by Kevin Hartnett (Quanta Magazine)
The Information Theory of Life: The polymath Christoph Adami is investigating life’s origins by reimagining living things as self-perpetuating information strings.

Syndicated copies to: