🔖 Emerging Frontiers of Neuroengineering: A Network Science of Brain Connectivity

Emerging Frontiers of Neuroengineering: A Network Science of Brain Connectivity by Danielle S. Bassett, Ankit N. Khambhati, Scott T. Grafton (arxiv.org)
Neuroengineering is faced with unique challenges in repairing or replacing complex neural systems that are composed of many interacting parts. These interactions form intricate patterns over large spatiotemporal scales, and produce emergent behaviors that are difficult to predict from individual elements. Network science provides a particularly appropriate framework in which to study and intervene in such systems, by treating neural elements (cells, volumes) as nodes in a graph and neural interactions (synapses, white matter tracts) as edges in that graph. Here, we review the emerging discipline of network neuroscience, which uses and develops tools from graph theory to better understand and manipulate neural systems, from micro- to macroscales. We present examples of how human brain imaging data is being modeled with network analysis and underscore potential pitfalls. We then highlight current computational and theoretical frontiers, and emphasize their utility in informing diagnosis and monitoring, brain-machine interfaces, and brain stimulation. A flexible and rapidly evolving enterprise, network neuroscience provides a set of powerful approaches and fundamental insights critical to the neuroengineer's toolkit.

17 pages, 6 figures. Manuscript accepted to the journal Annual Review of Biomedical Engineering [1]

References

[1]
D. Bassett S., A. Khambhati N., and S. Grafton T., “Emerging Frontiers of Neuroengineering: A Network Science of Brain Connectivity,” arXiv, 23-Dec-2016. [Online]. Available: https://arxiv.org/abs/1612.08059. [Accessed: 03-Jan-2017]
Syndicated copies to:

🔖 A Physical Basis for the Second Law of Thermodynamics: Quantum Nonunitarity

A Physical Basis for the Second Law of Thermodynamics: Quantum Nonunitarity by R. E. Kastner (arxiv.org)
It is argued that if the non-unitary measurement transition, as codified by Von Neumann, is a real physical process, then the "probability assumption" needed to derive the Second Law of Thermodynamics naturally enters at that point. The existence of a real, indeterministic physical process underlying the measurement transition would therefore provide an ontological basis for Boltzmann's Stosszahlansatz and thereby explain the unidirectional increase of entropy against a backdrop of otherwise time-reversible laws. It is noted that the Transactional Interpretation (TI) of quantum mechanics provides such a physical account of the non-unitary measurement transition, and TI is brought to bear in finding a physically complete, non-ad hoc grounding for the Second Law.

Download .pdf copy

Syndicated copies to:

🔖 100 years after Smoluchowski: stochastic processes in cell biology

100 years after Smoluchowski: stochastic processes in cell biology by David Holcman and Zeev Schuss (arxiv.org)
100 years after Smoluchowski introduces his approach to stochastic processes, they are now at the basis of mathematical and physical modeling in cellular biology: they are used for example to analyse and to extract features from large number (tens of thousands) of single molecular trajectories or to study the diffusive motion of molecules, proteins or receptors. Stochastic modeling is a new step in large data analysis that serves extracting cell biology concepts. We review here the Smoluchowski's approach to stochastic processes and provide several applications for coarse-graining diffusion, studying polymer models for understanding nuclear organization and finally, we discuss the stochastic jump dynamics of telomeres across cell division and stochastic gene regulation.

65 pages, J. Phys A 2016 [1]

References

[1]
D. Holcman and Z. Schuss, “100 years after Smoluchowski: stochastic processes in cell biology,” arXiv, 26-Dec-2016. [Online]. Available: https://arxiv.org/abs/1612.08381. [Accessed: 03-Jan-2017]
Syndicated copies to:

🔖 H-theorem in quantum physics by G. B. Lesovik, et al.

H-theorem in quantum physics by G. B. Lesovik, A. V. Lebedev, I. A. Sadovskyy, M. V. Suslov & V. M. Vinokur (Nature.com)

Abstract

Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy. [1]

Footnotes

[1]
G. B. Lesovik, A. V. Lebedev, I. A. Sadovskyy, M. V. Suslov, and V. M. Vinokur, “H-theorem in quantum physics,” Scientific Reports, vol. 6. Springer Nature, p. 32815, 12-Sep-2016 [Online]. Available: http://dx.doi.org/10.1038/srep32815
Syndicated copies to:

Statistical Physics, Information Processing, and Biology Workshop at Santa Fe Institute

Information Processing and Biology by John Carlos Baez (Azimuth)
The Santa Fe Institute, in New Mexico, is a place for studying complex systems. I’ve never been there! Next week I’ll go there to give a colloquium on network theory, and also to participate in this workshop.

I just found out about this from John Carlos Baez and wish I could go! How have I not managed to have heard about it?

Stastical Physics, Information Processing, and Biology

Workshop

November 16, 2016 – November 18, 2016
9:00 AM
Noyce Conference Room

Abstract.
This workshop will address a fundamental question in theoretical biology: Does the relationship between statistical physics and the need of biological systems to process information underpin some of their deepest features? It recognizes that a core feature of biological systems is that they acquire, store and process information (i.e., perform computation). However to manipulate information in this way they require a steady flux of free energy from their environments. These two, inter-related attributes of biological systems are often taken for granted; they are not part of standard analyses of either the homeostasis or the evolution of biological systems. In this workshop we aim to fill in this major gap in our understanding of biological systems, by gaining deeper insight in the relation between the need for biological systems to process information and the free energy they need to pay for that processing.

The goal of this workshop is to address these issues by focusing on a set three specific question:

  1. How has the fraction of free energy flux on earth that is used by biological computation changed with time?;
  2. What is the free energy cost of biological computation / function?;
  3. What is the free energy cost of the evolution of biological computation / function.

In all of these cases we are interested in the fundamental limits that the laws of physics impose on various aspects of living systems as expressed by these three questions.

Purpose: Research Collaboration
SFI Host: David Krakauer, Michael Lachmann, Manfred Laubichler, Peter Stadler, and David Wolpert

Syndicated copies to:

🔖 Free download of Quantum Theory, Groups and Representations: An Introduction by Peter Woit

Final Draft of Quantum Theory, Groups and Representations: An Introduction by Peter Woit (Not Even Wrong | math.columbia.edu)

Peter Woit has just made the final draft (dated 10/25/16) of his new textbook Quantum Theory, Groups and Representations: An Introduction freely available for download from his website. It covers quantum theory with a heavy emphasis on groups and representation theory and “contains significant amounts of material not well-explained elsewhere.” He expects to finish up the diagrams and publish it next year some time, potentially through Springer.

I finally have finished a draft version of the book that I’ve been working on for the past four years or so. This version will remain freely available on my website here. The plan is to get professional illustrations done and have the book published by Springer, presumably appearing in print sometime next year. By now it’s too late for any significant changes, but comments, especially corrections and typos, are welcome.

At this point I’m very happy with how the book has turned out, since I think it provides a valuable point of view on the relation between quantum mechanics and mathematics, and contains significant amounts of material not well-explained elsewhere.

Peter Woit (), theoretical physicist, mathematician, professor Department of Mathematics, Columbia University
in Final Draft Version | Not Even Wrong

 

Syndicated copies to:

My Review Copy of The Big Picture by Sean Carroll

On the Origins of Life, Meaning, and the Universe Itself

I’m already a major chunk of the way through the book, having had an early ebook version of the text prior to publication. This is the published first edition with all the diagrams which I wanted to have prior to finishing my full review, which is forthcoming.

One thing I will mention is that it’s got quite a bit more philosophy in it than most popular science books with such a physics bent. Those who aren’t already up to speed on the math and science of modern physics can certainly benefit from the book (like most popular science books of its stripe, it doesn’t have any equations — hairy or otherwise), and it’s certain to help many toward becoming members of both of C.P. Snow’s two cultures. It might not be the best place for mathematicians and physicists to start moving toward the humanities with the included philosophy as the philosophy is very light and spotty in places and the explanations of the portions they’re already aware of may put them out a bit.

I’m most interested to see how he views complexity and thinking in the final portion of the text.

More detail to come…

Syndicated copies to:

Quantum Information Meets Quantum Matter

Quantum Information Meets Quantum Matter -- From Quantum Entanglement to Topological Phase in Many-Body Systems by Bei Zeng, Xie Chen, Duan-Lu Zhou, Xiao-Gang Wen (arxiv.org)
This is the draft version of a textbook, which aims to introduce the quantum information science viewpoints on condensed matter physics to graduate students in physics (or interested researchers). We keep the writing in a self-consistent way, requiring minimum background in quantum information science. Basic knowledge in undergraduate quantum physics and condensed matter physics is assumed. We start slowly from the basic ideas in quantum information theory, but wish to eventually bring the readers to the frontiers of research in condensed matter physics, including topological phases of matter, tensor networks, and symmetry-protected topological phases.
Syndicated copies to:

Matter, energy… knowledge: How to harness physics’ demonic power | New Scientist

Matter, energy… knowledge: How to harness physics' demonic power by Stephen Battersby (New Scientist)
Running a brain-twisting thought experiment for real shows that information is a physical thing – so can we now harness the most elusive entity in the cosmos?

This is a nice little overview article of some of the history of thermodynamics relating to information in physics and includes some recent physics advances as well. There are a few references to applications in biology at the micro level as well.

References

Syndicated copies to:

How Can We Apply Physics to Biology?

How Can We Apply Physics to Biology? by Philip Ball (nautil.us)
We don’t yet know quite what a physics of biology will consist of. But we won’t understand life without it.

This is an awesome little article with some interesting thought and philosophy on the current state of physics within biology and other related areas of study. It’s also got some snippets of history which aren’t frequently discussed in longer form texts.

Syndicated copies to:

Physicists Hunt For The Big Bang’s Triangles | Quanta Magazine

Physicists Hunt for the Big Bang'€™s Triangles by Natalie Wolchover (Quanta Magazine )

“The notion that counting more shapes in the sky will reveal more details of the Big Bang is implied in a central principle of quantum physics known as “unitarity.” Unitarity dictates that the probabilities of all possible quantum states of the universe must add up to one, now and forever; thus, information, which is stored in quantum states, can never be lost — only scrambled. This means that all information about the birth of the cosmos remains encoded in its present state, and the more precisely cosmologists know the latter, the more they can learn about the former.”

Syndicated copies to:

Can a Field in Which Physicists Think Like Economists Help Us Achieve Universal Knowledge?

Can a Field in Which Physicists Think Like Economists Help Us Achieve Universal Knowledge? by David Auerbach (Slate Magazine)
The Theory of Everything and Then Some: In complexity theory, physicists try to understand economics while sociologists think like biologists. Can they bring us any closer to universal knowledge?

A discussion of complexity and complexity theorist John H. Miller’s new book: A Crude Look at the Whole: The Science of Complex Systems in Business, Life, and Society.

Syndicated copies to:

What is Information? by Christoph Adami

What is Information? [1601.06176] by Christoph Adami (arxiv.org)
Information is a precise concept that can be defined mathematically, but its relationship to what we call "knowledge" is not always made clear. Furthermore, the concepts "entropy" and "information", while deeply related, are distinct and must be used with care, something that is not always achieved in the literature. In this elementary introduction, the concepts of entropy and information are laid out one by one, explained intuitively, but defined rigorously. I argue that a proper understanding of information in terms of prediction is key to a number of disciplines beyond engineering, such as physics and biology.

A proper understanding of information in terms of prediction is key to a number of disciplines beyond engineering, such as physics and biology.

Comments: 19 pages, 2 figures. To appear in Philosophical Transaction of the Royal Society A
Subjects: Adaptation and Self-Organizing Systems (nlin.AO); Information Theory (cs.IT); Biological Physics (physics.bio-ph); Quantitative Methods (q-bio.QM)
Cite as:arXiv:1601.06176 [nlin.AO] (or arXiv:1601.06176v1 [nlin.AO] for this version)

From: Christoph Adami
[v1] Fri, 22 Jan 2016 21:35:44 GMT (151kb,D) [.pdf]

Source: Christoph Adami [1601.06176] What is Information? on arXiv

Syndicated copies to:

Forthcoming ITBio-related book from Sean Carroll: “The Big Picture: On the Origins of Life, Meaning, and the Universe Itself”

Physicist Sean Carroll has a forthcoming book entitled The Big Picture: On the Origins of Life, Meaning, and the Universe Itself (Dutton, May 10, 2016) that will be of interest to many of our readers.

In catching up on blogs/reading from the holidays, I’ve noticed that physicist Sean Carroll has a forthcoming book entitled The Big Picture: On the Origins of Life, Meaning, and the Universe Itself (Dutton, May 10, 2016) that will be of interest to many of our readers. One can already pre-order the book via Amazon.

Prior to the holidays Sean wrote a blogpost that contains a full overview table of contents, which will give everyone a stronger idea of its contents. For convenience I’ll excerpt it below.

I’ll post a review as soon as a copy arrives, but it looks like a strong new entry in the category of popular science books on information theory, biology and complexity as well as potentially the areas of evolution, the origin of life, and physics in general.

As a side bonus, for those reading this today (1/15/16), I’ll note that Carroll’s 12 part lecture series from The Great Courses The Higgs Boson and Beyond (The Learning Company, February 2015) is 80% off.

The Big Picture

 

THE BIG PICTURE: ON THE ORIGINS OF LIFE, MEANING, AND THE UNIVERSE ITSELF

0. Prologue

* Part One: Cosmos

  • 1. The Fundamental Nature of Reality
  • 2. Poetic Naturalism
  • 3. The World Moves By Itself
  • 4. What Determines What Will Happen Next?
  • 5. Reasons Why
  • 6. Our Universe
  • 7. Time’s Arrow
  • 8. Memories and Causes

* Part Two: Understanding

  • 9. Learning About the World
  • 10. Updating Our Knowledge
  • 11. Is It Okay to Doubt Everything?
  • 12. Reality Emerges
  • 13. What Exists, and What Is Illusion?
  • 14. Planets of Belief
  • 15. Accepting Uncertainty
  • 16. What Can We Know About the Universe Without Looking at It?
  • 17. Who Am I?
  • 18. Abducting God

* Part Three: Essence

  • 19. How Much We Know
  • 20. The Quantum Realm
  • 21. Interpreting Quantum Mechanics
  • 22. The Core Theory
  • 23. The Stuff of Which We Are Made
  • 24. The Effective Theory of the Everyday World
  • 25. Why Does the Universe Exist?
  • 26. Body and Soul
  • 27. Death Is the End

* Part Four: Complexity

  • 28. The Universe in a Cup of Coffee
  • 29. Light and Life
  • 30. Funneling Energy
  • 31. Spontaneous Organization
  • 32. The Origin and Purpose of Life
  • 33. Evolution’s Bootstraps
  • 34. Searching Through the Landscape
  • 35. Emergent Purpose
  • 36. Are We the Point?

* Part Five: Thinking

  • 37. Crawling Into Consciousness
  • 38. The Babbling Brain
  • 39. What Thinks?
  • 40. The Hard Problem
  • 41. Zombies and Stories
  • 42. Are Photons Conscious?
  • 43. What Acts on What?
  • 44. Freedom to Choose

* Part Six: Caring

  • 45. Three Billion Heartbeats
  • 46. What Is and What Ought to Be
  • 47. Rules and Consequences
  • 48. Constructing Goodness
  • 49. Listening to the World
  • 50. Existential Therapy
  • Appendix: The Equation Underlying You and Me
  • Acknowledgments
  • Further Reading
  • References
  • Index

Source: Sean Carroll | The Big Picture: Table of Contents

Syndicated copies to: