Jordan Ellenberg don’t know stat | Rick’s Ramblings

Jordan Ellenberg don’t know stat by Rick Durrett, Ph.D. (Rick's Ramblings
There follows a discussion of flipping coins and the fact that frequencies have more random variation when the sample size is small, but he never stops to see if this is enough to explain the observation.

My intuition told me it did not, so I went and got some brain cancer data.

Jordan Ellenberg is called out a bit by Rick Durrett for one of his claims in the best seller How Not To Be Wrong: The Power of Mathematical Thinking.

I remember reading that section of the book and mostly breezing through that argument primarily as a simple example with a limited, but direct point. Durrett decided to delve into the applied math a bit further.

These are some of the subtle issues one eventually comes across when experts read others’ works which were primarily written for much broader audiences.

I also can’t help thinking that one paints a target on one’s back with a book title like that…

BTW, the quote of the day has to be:

… so I went and got some brain cancer data.

Syndicated copies to:

A New Thermodynamics Theory of the Origin of Life | Quanta Magazine

A New Physics Theory of Life by Natalie Wolchover (


Hypothesis annotations

[ hypothesis user = 'chrisaldrich' tags = 'EnglandQM']

Syndicated copies to:

Matter, energy… knowledge: How to harness physics’ demonic power | New Scientist

Matter, energy… knowledge: How to harness physics' demonic power by Stephen Battersby (New Scientist)
Running a brain-twisting thought experiment for real shows that information is a physical thing – so can we now harness the most elusive entity in the cosmos?

This is a nice little overview article of some of the history of thermodynamics relating to information in physics and includes some recent physics advances as well. There are a few references to applications in biology at the micro level as well.


Syndicated copies to:

Forthcoming ITBio-related book from Sean Carroll: “The Big Picture: On the Origins of Life, Meaning, and the Universe Itself”

Physicist Sean Carroll has a forthcoming book entitled The Big Picture: On the Origins of Life, Meaning, and the Universe Itself (Dutton, May 10, 2016) that will be of interest to many of our readers.

In catching up on blogs/reading from the holidays, I’ve noticed that physicist Sean Carroll has a forthcoming book entitled The Big Picture: On the Origins of Life, Meaning, and the Universe Itself (Dutton, May 10, 2016) that will be of interest to many of our readers. One can already pre-order the book via Amazon.

Prior to the holidays Sean wrote a blogpost that contains a full overview table of contents, which will give everyone a stronger idea of its contents. For convenience I’ll excerpt it below.

I’ll post a review as soon as a copy arrives, but it looks like a strong new entry in the category of popular science books on information theory, biology and complexity as well as potentially the areas of evolution, the origin of life, and physics in general.

As a side bonus, for those reading this today (1/15/16), I’ll note that Carroll’s 12 part lecture series from The Great Courses The Higgs Boson and Beyond (The Learning Company, February 2015) is 80% off.

The Big Picture



0. Prologue

* Part One: Cosmos

  • 1. The Fundamental Nature of Reality
  • 2. Poetic Naturalism
  • 3. The World Moves By Itself
  • 4. What Determines What Will Happen Next?
  • 5. Reasons Why
  • 6. Our Universe
  • 7. Time’s Arrow
  • 8. Memories and Causes

* Part Two: Understanding

  • 9. Learning About the World
  • 10. Updating Our Knowledge
  • 11. Is It Okay to Doubt Everything?
  • 12. Reality Emerges
  • 13. What Exists, and What Is Illusion?
  • 14. Planets of Belief
  • 15. Accepting Uncertainty
  • 16. What Can We Know About the Universe Without Looking at It?
  • 17. Who Am I?
  • 18. Abducting God

* Part Three: Essence

  • 19. How Much We Know
  • 20. The Quantum Realm
  • 21. Interpreting Quantum Mechanics
  • 22. The Core Theory
  • 23. The Stuff of Which We Are Made
  • 24. The Effective Theory of the Everyday World
  • 25. Why Does the Universe Exist?
  • 26. Body and Soul
  • 27. Death Is the End

* Part Four: Complexity

  • 28. The Universe in a Cup of Coffee
  • 29. Light and Life
  • 30. Funneling Energy
  • 31. Spontaneous Organization
  • 32. The Origin and Purpose of Life
  • 33. Evolution’s Bootstraps
  • 34. Searching Through the Landscape
  • 35. Emergent Purpose
  • 36. Are We the Point?

* Part Five: Thinking

  • 37. Crawling Into Consciousness
  • 38. The Babbling Brain
  • 39. What Thinks?
  • 40. The Hard Problem
  • 41. Zombies and Stories
  • 42. Are Photons Conscious?
  • 43. What Acts on What?
  • 44. Freedom to Choose

* Part Six: Caring

  • 45. Three Billion Heartbeats
  • 46. What Is and What Ought to Be
  • 47. Rules and Consequences
  • 48. Constructing Goodness
  • 49. Listening to the World
  • 50. Existential Therapy
  • Appendix: The Equation Underlying You and Me
  • Acknowledgments
  • Further Reading
  • References
  • Index

Source: Sean Carroll | The Big Picture: Table of Contents

Syndicated copies to:

Why Information Grows: The Evolution of Order, from Atoms to Economies

I just ordered a copy of Why Information Grows: The Evolution of Order, from Atoms to Economies by Cesar Hidalgo. Although it seems more focused on economics, the base theory seems to fit right into some similar thoughts I’ve long held about biology.

Why Information Grows: The Evolutiion of Order from Atoms to Economies by Cesar Hidalgo
Why Information Grows: The Evolutiion of Order from Atoms to Economies by Cesar Hidalgo


From the book description:

“What is economic growth? And why, historically, has it occurred in only a few places? Previous efforts to answer these questions have focused on institutions, geography, finances, and psychology. But according to MIT’s antidisciplinarian César Hidalgo, understanding the nature of economic growth demands transcending the social sciences and including the natural sciences of information, networks, and complexity. To understand the growth of economies, Hidalgo argues, we first need to understand the growth of order.

At first glance, the universe seems hostile to order. Thermodynamics dictates that over time, order–or information–will disappear. Whispers vanish in the wind just like the beauty of swirling cigarette smoke collapses into disorderly clouds. But thermodynamics also has loopholes that promote the growth of information in pockets. Our cities are pockets where information grows, but they are not all the same. For every Silicon Valley, Tokyo, and Paris, there are dozens of places with economies that accomplish little more than pulling rocks off the ground. So, why does the US economy outstrip Brazil’s, and Brazil’s that of Chad? Why did the technology corridor along Boston’s Route 128 languish while Silicon Valley blossomed? In each case, the key is how people, firms, and the networks they form make use of information.

Seen from Hidalgo’s vantage, economies become distributed computers, made of networks of people, and the problem of economic development becomes the problem of making these computers more powerful. By uncovering the mechanisms that enable the growth of information in nature and society, Why Information Grows lays bear the origins of physical order and economic growth. Situated at the nexus of information theory, physics, sociology, and economics, this book propounds a new theory of how economies can do, not just more, but more interesting things.”

Syndicated copies to:

Popular Science Books on Information Theory, Biology, and Complexity

The beginning of a four part series in which I provide a gradation of books and texts that lie in the intersection of the application of information theory, physics, and engineering practice to the area of biology.

Previously, I had made a large and somewhat random list of books which lie in the intersection of the application of information theory, physics, and engineering practice to the area of biology.  Below I’ll begin to do a somewhat better job of providing a finer gradation of technical level for both the hobbyist or the aspiring student who wishes to bring themselves to a higher level of understanding of these areas.  In future posts, I’ll try to begin classifying other texts into graduated strata as well.  The final list will be maintained here: Books at the Intersection of Information Theory and Biology.

Introductory / General Readership / Popular Science Books

These books are written on a generally non-technical level and give a broad overview of their topics with occasional forays into interesting or intriguing subtopics. They include little, if any, mathematical equations or conceptualization. Typically, any high school student should be able to read, follow, and understand the broad concepts behind these books.  Though often non-technical, these texts can give some useful insight into the topics at hand, even for the most advanced researchers.

Complexity: A Guided Tour by Melanie Mitchell (review)

Possibly one of the best places to start, this text gives a great overview of most of the major areas of study related to these fields.

Entropy Demystified: The Second Law Reduced to Plain Common Sense by Arieh Ben-Naim

One of the best books on the concept of entropy out there.  It can be read even by middle school students with no exposure to algebra and does a fantastic job of laying out the conceptualization of how entropy underlies large areas of the broader subject. Even those with Ph.D.’s in statistical thermodynamics can gain something useful from this lovely volume.

The Information: A History, a Theory, a Flood by James Gleick (review)

A relatively recent popular science volume covering various conceptualizations of what information is and how it’s been dealt with in science and engineering.  Though it has its flaws, its certainly a good introduction to the beginner, particularly with regard to history.

The Origin of Species by Charles Darwin

One of the most influential pieces of writing known to man, this classical text is the basis from which major strides in biology have been made as a result. A must read for everyone on the planet.

Information, Entropy, Life and the Universe: What We Know and What We Do Not Know by Arieh Ben-Naim

Information Theory and Evolution by John Avery

The Touchstone of Life: Molecular Information, Cell Communication, and the Foundations of Life by Werner R. Loewenstein (review)

Information Theory, Evolution, and the Origin of Life by Hubert P. Yockey

The four books above have a significant amount of overlap. Though one could read all of them, I recommend that those pressed for time choose Ben-Naim first. As I write this I’ll note that Ben-Naim’s book is scheduled for release on May 30, 2015, but he’s been kind enough to allow me to read an advance copy while it was in process; it gets my highest recommendation in its class. Loewenstein covers a bit more than Avery who also has a more basic presentation. Most who continue with the subject will later come across Yockey’s Information Theory and Molecular Biology which is similar to his text here but written at a slightly higher level of sophistication. Those who finish at this level of sophistication might want to try Yockey third instead.

The Red Queen: Sex and the Evolution of Human Nature by Matt Ridley

Grammatical Man: Information, Entropy, Language, and Life  by Jeremy Campbell

Life’s Ratchet: How Molecular Machines Extract Order from Chaos by Peter M. Hoffmann

Complexity: The Emerging Science at the Edge of Order and Chaos by M. Mitchell Waldrop

The Big Picture: On the Origins of Life, Meaning, and the Universe Itself (Dutton, May 10, 2016) 

In the coming weeks/months, I’ll try to continue putting recommended books on the remainder of the rest of the spectrum, the balance of which follows in outline form below. As always, I welcome suggestions and recommendations based on others’ experiences as well. If you’d like to suggest additional resources in any of the sections below, please do so via our suggestion box. For those interested in additional resources, please take a look at the ITBio Resources page which includes information about related research groups; references and journal articles; academic, research institutes, societies, groups, and organizations; and conferences, workshops, and symposia.

Lower Level Undergraduate

These books are written at a level that can be grasped and understood by most with a freshmen or sophomore university level. Coursework in math, science, and engineering will usually presume knowledge of calculus, basic probability theory, introductory physics, chemistry, and basic biology.

Upper Level Undergraduate

These books are written at a level that can be grasped and understood by those at a junior or senor university level. Coursework in math, science, and engineering may presume knowledge of probability theory, differential equations, linear algebra, complex analysis, abstract algebra, signal processing, organic chemistry, molecular biology, evolutionary theory, thermodynamics, advanced physics, and basic information theory.

Graduate Level

These books are written at a level that can be grasped and understood by most working at the level of a master’s level at most universities.  Coursework presumes all the previously mentioned classes, though may require a higher level of sub-specialization in one or more areas of mathematics, physics, biology, or engineering practice.  Because of the depth and breadth of disciplines covered here, many may feel the need to delve into areas outside of their particular specialization.

Syndicated copies to:

Uri Alon: Why Truly Innovative Science Demands a Leap into the Unknown

I recently ran across this TED talk and felt compelled to share it. It really highlights some of my own personal thoughts on how science should be taught and done in the modern world.  It also overlaps much of the reading I’ve been doing lately on innovation and creativity. If these don’t get you to watch, then perhaps mentioning that Alon manages to apply comedy and improvisation techniques to science will.

Uri Alon was already one of my scientific heroes, but this adds a lovely garnish.



Review of The Signal and the Noise: Why So Many Predictions Fail – But Some Don’t

The Signal and the Noise: Why So Many Predictions Fail, But Some Don't Book Cover The Signal and the Noise: Why So Many Predictions Fail, But Some Don't
Nate Silver
Business & Economics
Penguin Press HC
September 27, 2012
personal library

The founder of challenges myths about predictions in subjects ranging from the financial market and weather to sports and politics, profiling the world of prediction to explain how readers can distinguish true signals from hype, in a report that also reveals the sources and societal costs of wrongful predictions.

Started Reading: May 25, 2013
Finished Reading: October 13, 2013

Given the technical nature of what Nate Silver does, and some of the early mentions of the book, I had higher hopes for the technical portions of the book. As usual for a popular text, I was left wanting a lot more. Again, the lack of any math left a lot to desire. I wish technical writers could get away with even a handful of equations, but wishing just won’t make it so.

The first few chapters were a bit more technical sounding, but eventually devolved into a more journalistic viewpoint of statistics, prediction, and forecasting in general within the areas of economics, political elections, weather forecasting, earthquakes, baseball, poker, chess, and terrorism. I have a feeling he lost a large part of his audience in the first few chapters by discussing the economic meltdown of 2008 first instead of baseball or poker and then getting into politics and economics.

While some of the discussion around each of these bigger topics are all intrinsically interesting and there were a few interesting tidbits I hadn’t heard or read about previously, on the whole it wasn’t really as novel as I had hoped it would be. I think it should be required reading for all politicians however, as I too often get the feeling that none of them think at this level.

There was some reasonably good philosophical discussion of Bayesian statistics versus Fisherian, but it was all too short and could have been fleshed out more significantly. I still prefer David Applebaum’s historical and philosophical discussion of probability in Probability and Information: An Integrated Approach though he surprisingly didn’t mention R.A. Fisher directly himself in his coverage.

It was interesting to run across additional mentions of power laws in the realms of earthquakes and terrorism after reading Melanie Mitchell’s Complexity: A Guided Tour (review here), but I’ll have to find some texts which describe the mathematics in full detail. There was surprisingly large amount of discussion skirting around the topics within complexity without delving into it in any substantive form.

For those with a pre-existing background in science and especially probability theory, I’d recommend skipping this and simply reading Daniel Kahneman’s book Thinking, Fast and Slow. Kahneman’s work is referenced several times and his book seems less intuitive than some of the material Silver presents here.

This is the kind of text which should be required reading in high school civics classes. Perhaps it might motivate more students to be interested in statistics and science related pursuits as these are almost always at the root of most political and policy related questions at the end of the day.

For me, I’d personally give this three stars, but the broader public should view it with at least four stars if not five as there is some truly great stuff here. Unfortunately a lot of it is old hat or retreaded material for me.

Syndicated copies to:

Book Review: “Complexity: A Guided Tour” by Melanie Mitchell

Complexity: A Guided Tour Book Cover Complexity: A Guided Tour
Melanie Mitchell
Popular Science
Oxford University Press
May 28, 2009

This book provides an intimate, highly readable tour of the sciences of complexity, which seek to explain how large-scale complex, organized, and adaptive behavior can emerge from simple interactions among myriad individuals. The author, a leading complex systems scientist, describes the history of ideas, current research, and future prospects in this vital scientific effort.

This is handily one of the best, most interesting, and (to me at least) the most useful popularly written science books I’ve yet to come across. Most popular science books usually bore me to tears and end up being only pedantic for their historical backgrounds, but this one is very succinct with some interesting viewpoints (some of which I agree with and some of which my intuition says are terribly wrong) on the overall structure presented.

For those interested in a general and easily readable high-level overview of some of the areas of research I’ve been interested in (information theory, thermodynamics, entropy, microbiology, evolution, genetics, along with computation, dynamics, chaos, complexity, genetic algorithms, cellular automata, etc.) for the past two decades, this is really a lovely and thought-provoking book.

At the start I was disappointed that there were almost no equations in the book to speak of – and perhaps this is why I had purchased it when it came out and it’s subsequently been sitting on my shelf for so long. The other factor that prevented me from reading it was the depth and breadth of other more technical material I’ve read which covers the majority of topics in the book. I ultimately found myself not minding so much that there weren’t any/many supporting equations aside from a few hidden in the notes at the end of the text in most part because Dr. Mitchell does a fantastic job of pointing out some great subtleties within the various subjects which comprise the broader concept of complexity which one generally would take several years to come to on one’s own and at far greater expense of their time. Here she provides a much stronger picture of the overall subjects covered and this far outweighed the lack of specificity. I honestly wished I had read the book when it was released and it may have helped me to me more specific in my own research. Fortunately she does bring up several areas I will need to delve more deeply into and raised several questions which will significantly inform my future work.

In general, I wish there were more references I hadn’t read or been aware of yet, but towards the end there were a handful of topics relating to fractals, chaos, computer science, and cellular automata which I have been either ignorant of or which are further down my reading lists and may need to move closer to the top. I look forward to delving into many of these shortly. As a simple example, I’ve seen Zipf’s law separately from the perspectives of information theory, linguistics, and even evolution, but this is the first time I’ve seen it related to power laws and fractals.

I definitely appreciated the fact that Dr. Mitchell took the time to point out her own personal feelings on several topics and more so that she explicitly pointed them out as her own gut instincts instead of mentioning them passingly as if they were provable science which is what far too many other authors would have likely done. There are many viewpoints she takes which I certainly don’t agree with, but I suspect that it’s because I’m coming at things from the viewpoint of an electrical engineer with a stronger background in information theory and microbiology while hers is closer to that of computer science. She does mention that her undergraduate background was in mathematics, but I’m curious what areas she specifically studied to have a better understanding of her specific viewpoints.

Her final chapter looking at some of the pros and cons of the topic(s) was very welcome, particularly in light of previous philosophic attempts like cybernetics and general systems theory which I (also) think failed because of their lack of specificity. These caveats certainly help to place the scientific philosophy of complexity into a much larger context. I will generally heartily agree with her viewpoint (and that of others) that there needs to be a more rigorous mathematical theory underpinning the overall effort. I’m sure we’re all wondering “Where is our Newton?” or to use her clever aphorism that we’re “waiting for Carnot.” (Sounds like it should be a Tom Stoppard play title, doesn’t it?)

I might question her brief inclusion of her own Ph.D. thesis work in the text, but it did actually provide a nice specific and self-contained example within the broader context and also helped to tie several of the chapters together.

My one slight criticism of the work would be the lack of better footnoting within the text. Though many feel that footnote numbers within the text or inclusion at the bottom of the pages detracts from the “flow” of the work, I found myself wishing that she had done so here, particularly as I’m one of the few who actually cares about the footnotes and wants to know the specific references as I read. I hope that Oxford eventually publishes an e-book version that includes cross-linked footnotes in the future for the benefit of others.

I can heartily recommend this book to any fan of science, but I would specifically recommend it to any undergraduate science or engineering major who is unsure of what they’d specifically like to study and might need some interesting areas to take a look at. I will mention that one of the tough parts of the concept of complexity is that it is so broad and general that it encompasses over a dozen other fields of study each of which one could get a Ph.D. in without completely knowing the full depth of just one of them much less the full depth of all of them. The book is so well written that I’d even recommend it to senior researchers in any of the above mentioned fields as it is certainly sure to provide not only some excellent overview history of each, but it is sure to bring up questions and thoughts that they’ll want to include in their future researches in their own specific sub-areas of expertise.

Syndicated copies to:

How to Sidestep Mathematical Equations in Popular Science Books

In the publishing industry there is a general rule-of-thumb that every mathematical equation included in a book will cut the audience of science books written for a popular audience in half – presumably in a geometric progression. This typically means that including even a handful of equations will give you an effective readership of zero – something no author and certainly no editor or publisher wants.

I suspect that there is a corollary to this that every picture included in the text will help to increase your readership, though possibly not by as proportionally a large amount.

In any case, while reading Melanie Mitchell’s text Complexity: A Guided Tour [Cambridge University Press, 2009] this weekend, I noticed that, in what appears to be a concerted effort to include an equation without technically writing it into the text and to simultaneously increase readership by including a picture, she cleverly used a picture of Boltzmann’s tombstone in Vienna! Most fans of thermodynamics will immediately recognize Boltzmann’s equation for entropy, S = k log W , which appears engraved on the tombstone over his bust.

Page 51 of Melanie Mitchell's book "Complexity: A Guided Tour"
Page 51 of Melanie Mitchell’s book “Complexity: A Guided Tour” featuring Boltzmann’s tombstone in Vienna.

I hope that future mathematicians, scientists, and engineers will keep this in mind and have their tombstones engraved with key formulae to assist future authors in doing the same – hopefully this will help to increase the amount of mathematics that is deemed “acceptable” by the general public.

Brief Book Review: James Gleick’s “The Information: a History, a Theory, a Flood”

Overall James Gleick’s book The Information: a History, a Theory, a Flood is an excellent read. Given that it’s an area with which I’m intimately interested, I’m not too surprised that most of it is “review”, but I’d highly recommend it to the general public to know more about some of the excellent history, philosophy, and theory which Gleick so nicely summarizes throughout the book.

Book Cover: The Information

There are one or two references in the back which I’ll have to chase down and read and one or two, which after many years, seem like they may be worth a second revisiting after having completed this.

Even for the specialist, Gleick manages to tie together some disparate thoughts to create an excellent whole which makes it a very worthwhile read. I found towards the last several chapters, Gleick’s style becomes much more flowery and less concrete, but most of it is as a result of covering the “humanities” perspective of information as opposed to the earlier parts of the text which were more specific to history and the scientific theories he covered.

Review originally posted at

Book Review: Charles Seife’s “Proofiness: The Dark Arts of Mathematical Deception”

Proofiness: The Dark Arts of Mathematical Deception Book Cover Proofiness: The Dark Arts of Mathematical Deception
Charles Seife
Mathematics, Popular Science
September 23, 2010

The bestselling author of Zero shows how mathematical misinformation pervades-and shapes-our daily lives. According to MSNBC, having a child makes you stupid. You actually lose IQ points. Good Morning America has announced that natural blondes will be extinct within two hundred years. Pundits estimated that there were more than a million demonstrators at a tea party rally in Washington, D.C., even though roughly sixty thousand were there. Numbers have peculiar powers-they can disarm skeptics, befuddle journalists, and hoodwink the public into believing almost anything. "Proofiness," as Charles Seife explains in this eye-opening book, is the art of using pure mathematics for impure ends, and he reminds readers that bad mathematics has a dark side. It is used to bring down beloved government officials and to appoint undeserving ones (both Democratic and Republican), to convict the innocent and acquit the guilty, to ruin our economy, and to fix the outcomes of future elections. This penetrating look at the intersection of math and society will appeal to readers of Freakonomics and the books of Malcolm Gladwell.

Charles Seife doesn’t prove that mathematics is essential for a democracy, but he certainly shows how the lack of proper use of mathematics can fray heavily at the edges!

Book Cover for Proofiness: The Dark Arts of Mathematical Deception

Proofiness was a great book to have read over a long Fourth of July holiday. Though many people may realize some of the broad general concepts in the book, it’s great to have a better structure for talking about concepts like Potemkin numbers, disestimation, fruit packing, cherry picking, apple polishing, comparing apples to oranges, causuistry, randnumbness, regression to the moon, tragedy of the commons, and moral hazard among others. If you didn’t think mathematics was important to daily life or our democratic society, this book will certainly change your mind.

Seife covers everything from polls, voting, politics, economics, marketing, law, and even health to show how numbers are misused in a modern world that can ill-afford to ignore what is really going on around us.

This is a fantastic book for nearly everyone in the general public, but I’d highly recommend it for high school students while taking civics.

Original review posted on on 7/9/12.

Reading Progress
  • 07/07/12 marked as: currently reading
  • 07/07/12 23.0% #
  • 07/09/12 52.0%
  • 07/09/12 Finished book
Syndicated copies to:

David Christian’s “Maps of Time” and “Big History” – a Profound Thesis

Headshot of David Christian
Historian David Christian

David Christian, a trained historian, is one of the leading proponents of the relatively new concept of Big History, which I view as a sea-change in the way humans will begin to view not only the world but our place in it and what we might expect to come in the future.  His work presents a truly monumental and profound thesis and a drastically new framework for where humankind fits into the universe. Of the broad variety of works I’ve read in the past several decades, it is simply one of the most interesting and cohesive theses I’ve come across, and I highly and unreservedly recommend it to everyone I know.  I’d put it on par or above works like Jared Diamond’s Guns, Germs, and Steel and Matt Ridley’s The Rational Optimist among others for its broad impact on how I now view the world. For scientists and researchers it has the potential to be the philosophical equivalent of The Bible and in fact, like many religious texts, it is in effect a modern day “creation myth,” albeit one with a scientific underpinning.

Christian’s work was initially brought to my attention by an article in the Chronicle of Higher Education by Jeffrey R. Young in which he mentioned that Bill Gates was a big fan of Christian’s work and had recommended it himself at a TED conference. (Gates is now also a financial supporter of Christian’s Big History Project.) I myself was aware of the Learning Company’s generally excellent coursework offerings and within a few weeks got an audio copy of the course of forty-eight lectures to listen to on my daily commute.

I’ve now devoured both his rather large text on the subject as well as a lecture series he created for a course on the subject. Below are brief reviews of the two works.The magnum written opus Maps of Time: An Introduction to Big History is an interesting change of reference from a historical perspective combining the disciplines of physics, cosmology, astronomy, geology, chemistry, microbiology, evolutionary theory, archaeology, politics, religion, economics, sociology, and history into one big area of contiguous study based upon much larger timescales than those traditionally taken in the study of historical time periods. Though it takes pieces from many disciplines, it provides for an interesting, fresh, and much needed perspective on who humans are and their place in not only the world, but the entire universe.

By looking at history from a much broader viewpoint (billions of years versus the more common decades or even just a few centuries) one comes away with a drastically different perspective on the universe and life.

Book cover of "The Maps of Time"I’d highly recommend this to any general reader as early as they can find time to read through it, particularly because it provides such an excellent base for a variety of disciplines thereby better framing their future studies. I wish I had been able to read this book in the ninth or tenth grade or certainly at the latest by my freshman year in college – alas the general conception of the topic itself didn’t exist until after I had graduated from university.

Although I have significant backgrounds in most, if not all, of the disciplines which comprise the tapestry of big history, the background included in the book is more than adequate to give the general reader the requisite introductions to these subjects to make big history a coherent subject on its own.

This could be an extremely fundamental and life-changing book for common summer reading programs of incoming college freshman. If I could, I would make it required reading for all students at the high school level. Fortunately Bill Gates and others are helping to fund David Christian’s work to help introduce it more broadly at the high school and other educational levels.

Within David Christian’s opus, there is also a collection of audio lectures produced by The Learning Company as part of their Great Courses series which I listened to as well. The collection of forty-eight lectures is entitled Big History: The Big Bang, Life on Earth, and the Rise of Humanity (Great Courses, Course No. 8050). It provides a much quicker philosophical overview of the subject and doesn’t delve as deeply into the individual disciplines as the text does, but still provides a very cohesive presentation of the overall thesis.  In fact, for me, the introduction to the topic was much better in these audio lectures than it was in the written book. Christian’s lecture style is fantastic and even better than his already excellent writing style.

Because of the scale on which we look at the past, you should not expect to find in it many of the familiar details, names, and personalities that you’ll find in other types of historical teaching and writing. For example, the French Revolution and the Renaissance will barely get a mention. They’ll zoom past in a blur. You’ll barely see them. Instead, what we’re going to see are some less familiar aspects of the past. … We’ll be looking, above all, for the very large patterns, the shape of the past.

David Christian in Maps of Time: An Introduction to Big History

In the audio lectures Christian highlights eight major thresholds which he uses as a framework by which to view the 13.4 billion years of history which the Universe has presently traversed.  Then within those he uses the conceptualization of disparities in power/energy as the major driving forces/factors in history in a unique and enlightening way which provides a wealth of perspective on almost every topic (scientific or historical) one can consider. This allows one to see parallels and connections between seemingly disparate topics like the creations of stars and the first building of cities or how the big bang is similar to the invention of agriculture.

I can easily say that David Christian’s works on big history are some of the most influential works I’ve ever come across – and having experienced them, I can never see our universe in the same naive way again.

For those interested in taking a short and immediate look at Christian’s work, I can recommend his Ted Talk “The History of Our World in 18 Minutes” which only begins to scratch the surface of his much deeper and profound thesis: 

Given how profound the topic of big history is, I’m sure I’ll be writing about and referring to it often. Posts in relation to it can be found here with the tag: “big history“.

Added material below on 21-October-2016

Reading Progress


Added material below on 23-October-2016

Highlights, Quotes, & Marginalia

Preface to the 2011 Edition
In Big History and the Future of Humanity, Fred Spier has built on an earlier work of his and on the work of Eric Chaisson to produce what is currently by far the most sophisticated attempt to construct a thematic scaffolding for big history. He carefully links the idea of increasing complexity with the associated themes of energy flows and the idea of goldilocks conditions—the notion that complexity can increase only under very special conditions and within quite exacting “boundary conditions.” Here are broad theoretical ideas that can help give greater depth and coherence to the story told within big history.
Highlight (yellow) – Location 443
big history promises to open up exciting new research agendas (including the meaning of complexity and energy flows, and the role of information across many disciplines),
Highlight (yellow) – Location 483
Introduction: A Modern Creation Myth?
sociologist Émile Durkheim referred to as “anomie”: the sense of not fitting in,
Highlight (yellow) – Location 550
Russian matryoshka doll
Highlight (orange) – Location 651
Accounts of the past that focus primarily on the divisions between nations, religions, and cultures are beginning to look parochial and anachronistic—even dangerous.
Highlight (yellow) – Location 702
Highlight (orange) – Location 753
Chaisson, Eric J. Cosmic Evolution: The Rise of Complexity in Nature. Cambridge, Mass.: Harvard University Press, 2001.
Highlight (green) – Location 795
Margulis, Lynn, and Dorion Sagan. Microcosmos: Four Billion Years of Microbial Evolution. London: Allen and Unwin, 1987.
Highlight (green) – Location 844
Maynard Smith, John, and Eörs Szathmáry. The Origins of Life: From the Birth of Life to the Origins of
Highlight (green) – Location 847
Spier, Fred. The Structure of Big History: From the Big Bang until Today. Amsterdam: Amsterdam University Press, 1996.
Highlight (green) – Location 878
Part I: The Inanimate Universe
Highlight (green) – 1. The First 300,000 Years: Origins of the Universe, Time, and Space > Location 907
This is very much how modern nuclear physics views the idea of a vacuum: it is empty but can nevertheless have shape and structure, and (as has been proved in experiments with particle accelerators) “things” and “energies” can pop out of the emptiness.
Highlight (yellow) – 1. The First 300,000 Years: Origins of the Universe, Time, and Space > Location 923
Popol Vuh, or “Council Book,” a sixteenth-century Mayan manuscript,
Highlight (green) – 1. The First 300,000 Years: Origins of the Universe, Time, and Space > Location 927
Dr. Lightfoot from Cambridge “proved” that God had created humans at exactly 9:00 AM on 23 October 4004 BCE.13
Highlight (yellow) – 1. The First 300,000 Years: Origins of the Universe, Time, and Space > Location 992
The particles that did find a partner were transformed into pure energy,
Highlight (yellow) – 1. The First 300,000 Years: Origins of the Universe, Time, and Space > Location 1088
Perhaps this is where dark matter and energy are hiding?
As an anonymous wit is supposed to have put it: “Hydrogen is a light, odorless gas which, given enough time, changes into people.”25
Highlight (yellow) – 1. The First 300,000 Years: Origins of the Universe, Time, and Space > Location 1131
The idea that form and matter are different expressions of the same underlying essence was proposed by the Italian Giordano Bruno as early as 1584, in a book called Concerning the Cause, Principle, and One.
Highlight (yellow) – 1. The First 300,000 Years: Origins of the Universe, Time, and Space > Location 1134
Eric Chaisson’s Cosmic Evolution (2001) is an attempt to think through the meaning of order and entropy at many different scales, from stars to microbes,
Highlight (green) – 1. The First 300,000 Years: Origins of the Universe, Time, and Space > Location 1394
The second law of thermodynamics ensures that all complex entities will eventually die; but the simpler the structure, the better its survival chances, which is why stars live so much longer than humans
Highlight (yellow) – 2. Origins of the Galaxies and Stars: The Beginnings of Complexity > Location 1521
Even in the densest part of the galaxy, the disk, regions of empty space normally contain only about one atom in each cubic centimeter. But in the earth’s atmosphere, there may be 25 billion billion molecules in the same space.15 And pouring though this matter is the energy emitted every second by the Sun. In other words, human history has taken place in a pocket of the universe that is dense in matter and packed with energy. It is the extraordinary richness and complexity of this environment that made life possible.
Highlight (yellow) – 2. Origins of the Galaxies and Stars: The Beginnings of Complexity > Location 1755
A Danish scientist, Nicholas Steno, first argued that fossils were the remains of organisms that had once lived on earth.
Highlight (yellow) – 3. Origins and History of the Earth > Location 1991
Charles Lyell first stated clearly what came to be known as the principle of uniformitarianism.
Highlight (yellow) – 3. Origins and History of the Earth > Location 1999
As the English philosopher Francis Bacon pointed out in 1620, it was easy to see from these maps that the continents looked like pieces of a jigsaw puzzle. This similarity was most striking when the west coast of Africa was matched up with the east coast of South America.
Highlight (yellow) – 3. Origins and History of the Earth > Location 2016
The idea that the continents really had drifted apart was given a thorough scientific basis in a book called The Origin of Continents and Oceans, written in 1915 by a German geographer, Alfred Wegener.
Highlight (yellow) – 3. Origins and History of the Earth > Location 2020
Gondwana sequence
Highlight (green) – 3. Origins and History of the Earth > Location 2024
uppermost layer of the earth (the lithosphere) consists of a number of rigid plates, like a cracked eggshell. There are eight large plates and seven smaller ones, as well as smaller slivers of material.
Highlight (yellow) – 3. Origins and History of the Earth > Location 2071
Highlight (green) – 3. Origins and History of the Earth > Location 2072
Highlight (green) – 3. Origins and History of the Earth > Location 2109
Highlight (green) – 3. Origins and History of the Earth > Location 2109
Highlight (green) – 3. Origins and History of the Earth > Location 2110
Highlight (green) – 3. Origins and History of the Earth > Location 2110
Highlight (green) – 3. Origins and History of the Earth > Location 2113
Part II: Life On Earth
“The unfolding of events in the life cycle of an organism exhibits an admirable regularity and orderliness, unrivalled by anything we meet with in inanimate matter.”
Highlight (yellow) – 4. The Origins of Life and the Theory of Evolution > Location 2158
In Schrödinger’s famous phrase, each living organism seems to have an astonishing capacity for “continually sucking orderliness from its environment.”
Highlight (blue) – 4. The Origins of Life and the Theory of Evolution > Location 2166
Unlike stars or crystals, which are general, all-purpose antientropy machines, …
Highlight (yellow) – 4. The Origins of Life and the Theory of Evolution > Location 2180
Think of homoestasis vs longevity
Darwin rarely used the term evolution, perhaps because it seems to imply some sort of mystical force that drives biological change in particular directions and thus would contradict his own view of biological change as a more open-ended process.
Highlight (yellow) – 4. The Origins of Life and the Theory of Evolution > Location 2240
Herbert Spencer, who did the most to popularize the term,
Highlight (yellow) – 4. The Origins of Life and the Theory of Evolution > Location 2242
Highlight (orange) – 4. The Origins of Life and the Theory of Evolution > Location 2297
Erasmus Darwin, suggested that species evolved so as to adapt better to their environments.
Highlight (yellow) – 4. The Origins of Life and the Theory of Evolution > Location 2315
In a book first published in 1809, the French naturalist Jean-Baptiste Lamarck suggested a possible mechanism. Perhaps minor changes acquired during a creature’s lifetime could somehow be passed on to its descendants.
Highlight (yellow) – 4. The Origins of Life and the Theory of Evolution > Location 2317
Time we spend in the gym does not guarantee that our children will be fit.
Highlight (yellow) – 4. The Origins of Life and the Theory of Evolution > Location 2323
Though epigenitics may be at work; see the studies of weight of self vs peers from c. 2010
Evolution works in fits and starts, according to the modern theory of “punctuated evolution,’ which was proposed by Niles Eldridge and Stephen Jay Gould in 1972.
Highlight (yellow) – 4. The Origins of Life and the Theory of Evolution > Location 2481
1920s by Alexander Oparin and J. B. S. Haldane, uses the basic ideas of evolutionary theory to explain not just the evolution of life on earth but also its initial appearance.
Highlight (yellow) – 4. The Origins of Life and the Theory of Evolution > Location 2512
But precisely how chemical evolution generated the first living organisms remains unclear. To understand these difficulties, we must break the problem into several levels. First, we need to explain how the basic raw materials of life were created: the chemical level. Second, we need to explain how these simple organic materials were assembled into more complex structures. Finally, we need to explain the origins of the precise mechanisms of reproduction encoded in the DNA that is present in all living organisms today. At present, we have reasonably good answers to the first question; we have plausible answers to the second question; and we are still puzzled by the third question.
Highlight (yellow) – 4. The Origins of Life and the Theory of Evolution > Location 2519
Harold Urey and his graduate student, Stanley Miller.
Highlight (yellow) – 4. The Origins of Life and the Theory of Evolution > Location 2537
Fred Hoyle and Chandra Wickramasinghe have argued that Earth was seeded with life from outside. This theory is known as Panspermia.
Highlight (yellow) – 4. The Origins of Life and the Theory of Evolution > Location 2572
A. G. Cairns-Smith has suggested that in shallow water, tiny crystals of clay may have provided a template for the formation of more complex molecules.
Highlight (yellow) – 4. The Origins of Life and the Theory of Evolution > Location 2590
Humans do not have the 60,000 to 80,000 genes we once believed were necessary to construct us but half that number, about 30,000. Roundworms have two-thirds as many genes as us (ca. 19,000), and fruit flies just under half (ca. 13,000); even Escherichia coli, a bacterium that inhabits our gut, may have as many as 4,000 genes. So, though constructing large organisms is tougher than constructing small organisms, the difference is not as great as we once imagined.
Highlight (yellow) – 5. The Evolution of Life and the Biosphere > Location 2782
It would seem that we’re not really becoming that more complex from a relative perspective here. What is the next major jump on the hockey stick?
As Margulis and Sagan put it: “For the macrocosmic size, energy, and complex bodies we enjoy, we trade genetic flexibility.”
Highlight (blue) – 5. The Evolution of Life and the Biosphere > Location 2867
The first extensive fossil evidence of multicellular organisms dates from the Ediacaran era, ca. 590 million years ago. But the fossil record of multicellular organisms really becomes abundant during the Cambrian era, from ca. 570 million years ago.
Highlight (yellow) – 5. The Evolution of Life and the Biosphere > Location 3032
In the middle of the nineteenth century, the German biologist Ernst Haeckel suggested that all single-celled organisms be classified within a separate kingdom of Protista. Then, in the 1930s, biologists realized that there was a fundamental difference between cells with nuclei and those without. As a result, they began to divide all organisms into two distinct kingdoms, the Prokaryota (organisms whose cells had no nuclei) and the Eukaroyta (organisms whose cells had nuclei). In some systems, the Eukaryota also include all multicellular organisms. In the second half of the twentieth century, powerful arguments emerged for the creation of separate kingdoms for fungi and for viruses (which are so simplified that they cannot even reproduce without hijacking the metabolic systems of other organisms). In the 1990s, Carl Woese proposed a new large classification to distinguish between the archaea and other forms of bacteria. Like all prokaryotes, archaea do not have nuclei; but unlike other prokaryotes they take in energy neither from sunlight nor from oxygen but from other chemicals.
Highlight (yellow) – 5. The Evolution of Life and the Biosphere > Location 3057
Highlight (orange) – 5. The Evolution of Life and the Biosphere > Location 3188
John Maynard Smith and Eörs Szathmáry’s The Origins of Life (1999) is a history of life on Earth, constructed around the central idea of the evolution of complexity.
Highlight (green) – 5. The Evolution of Life and the Biosphere > Location 3367
Part III: Early Human History: Many Worlds
Net primary productivity (NPP) is that portion of energy from sunlight that enters the food chain through photosynthesis and is turned into plant material.
Highlight (yellow) – 6. The Evolution of Humans > Location 3418
This means that the impact of human history will be visible on scales of at least a billion years.
Highlight (yellow) – 6. The Evolution of Humans > Location 3443
new ways of extracting resources from their environments.
Highlight (yellow) – 6. The Evolution of Humans > Location 3478
We have seen that the emergence of new forms of complexity always involves the creation of large structures within which previously independent entities are locked into new forms of interdependence and new rules of cooperation.7 Following this hint, we should expect to find that the transition to human history is primarily marked not by a change in the nature of humans as individuals but rather by a change in the way individuals relate to each other.
Highlight (yellow) – 6. The Evolution of Humans > Location 3482
learning collectively
Highlight (yellow) – 6. The Evolution of Humans > Location 3512
In an article first published in 1967, two biochemists working in the United States, Vincent Sarich and Alan Wilson, argued that much genetic change is subject to similar rules.
Highlight (yellow) – 6. The Evolution of Humans > Location 3589
Highlight (yellow) – 6. The Evolution of Humans > Location 3640
“Millennium Man”
Highlight (yellow) – 6. The Evolution of Humans > Location 3690
another possible candidate for the oldest hominine, Ardipithecus ramidus kadabba,
Highlight (yellow) – 6. The Evolution of Humans > Location 3692
Highlight (orange) – 6. The Evolution of Humans > Location 3792
It is possible that tool use evolved through a process known as Baldwinian adaptation (named after the nineteenth-century American psychologist who first described it systematically). This is a form of evolutionary change that appears to combine Darwinian and cultural elements, because behavioral changes lead to changes in an animal’s lifeways, thereby creating new selective pressures that lead, over time, to genetic changes.
Highlight (yellow) – 6. The Evolution of Humans > Location 3814
the so-called Levallois or Mousterian tools.
Highlight (yellow) – 6. The Evolution of Humans > Location 3905
Highlight (orange) – 6. The Evolution of Humans > Location 3945
Roger Lewin’s Human Evolution (4th ed., 1999)
Highlight (green) – 6. The Evolution of Humans > Location 3985
Steven Mithen has proposed that a number of once discrete brain modules, some of which may have been present in the earliest hominines, merged quite suddenly—perhaps within the last hundred thousand years—in a sort of linguistic “big bang.”
Highlight (yellow) – 7. The Beginnings of Human History > Location 4025
The Symbolic Species, Terrence Deacon
Highlight (green) – 7. The Beginnings of Human History > Location 4033
Two factors stand out: the volume and variety of the information being pooled, and the efficiency and speed with which information is shared.
Highlight (yellow) – 7. The Beginnings of Human History > Location 4257
In a deliberately provocative essay published in 1972, the anthropologist Marshall Sahlins describes the world of the Stone Age as “the original affluent society.”
Highlight (yellow) – 7. The Beginnings of Human History > Location 4323
In his simple but influential model of social structures, Eric Wolf has suggested that “kin-ordered” societies constitute a major type of human community, one that survives in many different forms even in the modern world.26
Highlight (green) – 7. The Beginnings of Human History > Location 4364
Australian archaeologist Rhys Jones referred to such techniques as “fire stick farming.”39 Fire stick “farmers” deliberately set fire to bushland in regular cycles. In part, their aim was to prevent buildups of combustible material that could lead to hotter and more dangerous fires. But by clearing away underbrush, fire stick farming also encouraged the growth of new plants that, in turn, attracted browsers that could be hunted. Recent research suggests that such techniques may have been used as early as 45,000 years ago.40
Highlight (yellow) – 7. The Beginnings of Human History > Location 4486
Part IV: The Holocene: Few Worlds
All of recorded human history has taken place within the Holocene interglacial.
Highlight (yellow) – 8. Intensification and the Origins of Agriculture > Location 4768
Highlight (orange) – 8. Intensification and the Origins of Agriculture > Location 4860
Highlight (orange) – 8. Intensification and the Origins of Agriculture > Location 4969
The Trap of Sedentism
Highlight (yellow) – 8. Intensification and the Origins of Agriculture > Location 5240
In fact, most of human history (chronologically speaking) has taken place in communities quite innocent of state power. Even in the villages of the early agrarian era, for most people, most of the time, the important relationships were personal, local, and fairly egalitarian. Most households were self-sufficient, and people dealt with each other as people rather than as the representatives of institutions.
Highlight (yellow) – 9. From Power over Nature to Power over People: Cities, States, and “Civilizations” > Location 5442
But exploitation, like symbiosis, is never simple or unambiguous. Like predation in the nonhuman world, it can take more or less brutal forms. Lynn Margulis and Dorion Sagan observe, “In the long run, the most vicious predators, like the most dread disease-causing microbes, bring about their own ruin by killing their victims. Restrained predation—the attack that doesn’t quite kill or does kill only slowly—is a recurring theme in evolution.”
Highlight (yellow) – 9. From Power over Nature to Power over People: Cities, States, and “Civilizations” > Location 5525
irrigation could raise agricultural productivity decisively, which is why irrigation has been one of the most revolutionary of all technological innovations.
Highlight (yellow) – 9. From Power over Nature to Power over People: Cities, States, and “Civilizations” > Location 5674
But population growth itself counts as a form of intensification, for in the era before fossil fuels, the energy resources available to human societies came mostly from human or animal muscle power.
Highlight (yellow) – 9. From Power over Nature to Power over People: Cities, States, and “Civilizations” > Location 5702
Inequality is what all top-down theories of state formation predict.
Highlight (yellow) – 9. From Power over Nature to Power over People: Cities, States, and “Civilizations” > Location 5730
as the sociologist Émile Durkheim first suggested, our thinking about the way the universe works often mirrors the way our own societies work.
Highlight (yellow) – 9. From Power over Nature to Power over People: Cities, States, and “Civilizations” > Location 5756
But most were used as sources of stored energy for their owners: where human labor power was as important a source of energy as oil is today, controlling energy meant controlling people. To make slaves more amenable to control, they were often separated at birth from their families. And, like domestic animals, many were deliberately kept in a state of infantile dependence that inflicted a sort of psychic amputation on them—they remained like children, and their helplessness made them easier to control. Both animal and human slaves could be controlled best if kept economically and psychically dependent on their owners.
Highlight (yellow) – 9. From Power over Nature to Power over People: Cities, States, and “Civilizations” > Location 5797
Highlight (orange) – 9. From Power over Nature to Power over People: Cities, States, and “Civilizations” > Location 6004
Outside the cities, they usually had little authority over the more localized forms of violence used to collect taxes, prosecute offenders or deal with banditry, or right local injustices. These powers were exercised by local elites or kinship groups. For most individuals, the righting of wrongs remained the duty of the household or kin group, which might seek the support of local patrons or officials.
Highlight (yellow) – 9. From Power over Nature to Power over People: Cities, States, and “Civilizations” > Location 6032
Sounds like modern day Muslim middle eastern practice now…
Wolf calls “tributes.” This is justification for regarding societies with states as an entirely new type of social structure. Wolf treats the emergence of what he calls “tribute-taking” societies as a major transformation in the lifeways and the organization of human societies.
Highlight (yellow) – 9. From Power over Nature to Power over People: Cities, States, and “Civilizations” > Location 6127
They include the emergence of dense populations, which generated a complex division of labor that posed new organizational problems, led to increased need for conflict resolution and to more frequent warfare, and encouraged the building of large monumental buildings as well as the creation of some form of writing.
Highlight (yellow) – 9. From Power over Nature to Power over People: Cities, States, and “Civilizations” > Location 6136
The demographic dynamism introduced into human history by agriculture ensured that sooner or later, humans, like termites, would face the novel challenge of living in dense communities of their own species. For all the local differences, the solutions humans found in different parts of the world turned out to be remarkably similar to each other—and also strikingly similar to those found by termites and other social insects.
Highlight (yellow) – 9. From Power over Nature to Power over People: Cities, States, and “Civilizations” > Location 6173
Marvin Harris’s classic essay, “The Origin of Pristine States” (1978).
Highlight (green) – 9. From Power over Nature to Power over People: Cities, States, and “Civilizations” > Location 6190
we can think of four main types of societies in this era: three—foragers, independent farmers, and pastoralists—lack states; one—agrarian civilizations—has states.
Highlight (yellow) – 10. Long Trends in the Era of Agrarian “Civilizations” > Location 6226
World historians have become increasingly sensitive to the importance of large systems of interaction, and have often analyzed them using the notion of world-systems. Immanuel Wallerstein, the originator of such theories, argued that particularly in the modern era, it was necessary to analyze not just particular nations or civilizations, but rather the larger networks of power and commerce in which they were entangled, because these networks explained features that could not be explained solely from the internal history of particular regions. Wallerstein called these networks “world-systems,” even though they did not literally embrace the entire world, on the grounds that in many regards they functioned as separate worlds.
Highlight (yellow) – 10. Long Trends in the Era of Agrarian “Civilizations” > Location 6354
Centers of gravity gave structure and shape to large networks of exchange, while hub regions were more lightweight and were more easily transformed by the exchanges that swept through them. So it was often in hub regions that significant innovations first became important because here was where they could have the greatest impact, while the mass and momentum of centers of gravity ensured that those regions normally changed more slowly.
Highlight (yellow) – 10. Long Trends in the Era of Agrarian “Civilizations” > Location 6421
During the reign of Sargon of Akkad (who ruled from ca. 2350 BCE for ca. 50 years), we have the first evidence for a new stage in state formation: the appearance of a state controlling several different city-states and their hinterlands.14
Highlight (yellow) – 10. Long Trends in the Era of Agrarian “Civilizations” > Location 6475
Highlight (orange) – 10. Long Trends in the Era of Agrarian “Civilizations” > Location 6644
Rein Taagepera has tried to measure the areas ruled by “imperial systems” of Afro-Eurasia at different dates.
Highlight (yellow) – 10. Long Trends in the Era of Agrarian “Civilizations” > Location 6694
three other factors shaped the pace and nature of innovation in this period: population growth, the expanding activity of states, and increasing commercialization and urbanization.
Highlight (yellow) – 10. Long Trends in the Era of Agrarian “Civilizations” > Location 6721
Scale as a Source of Innovation
Highlight (yellow) – 10. Long Trends in the Era of Agrarian “Civilizations” > Location 6728
“the respiration of a social structure.”
Highlight (yellow) – 10. Long Trends in the Era of Agrarian “Civilizations” > Location 6868
One reason for their immense influence was the overwhelming importance of the agrarian sector. Where most forms of production relied on organic materials and energy sources, agricultural output set limits to the production not just of foodstuffs but also of clothing, housing, energy, productive implements, and even parchment and paper.33 Because agriculture was the main motor of economic growth in the agrarian era, rates of innovation in agriculture dominated medium-term economic, political, and even cultural cycles.
Highlight (yellow) – 10. Long Trends in the Era of Agrarian “Civilizations” > Location 6869
States as Sources of Accumulation
Highlight (yellow) – 10. Long Trends in the Era of Agrarian “Civilizations” > Location 6998
The most stable states and the wisest rulers protected the productive base of their societies by taxing lightly, maintaining basic infrastructure, upholding law and order, and encouraging growth in rural populations and agricultural output.
Highlight (yellow) – 10. Long Trends in the Era of Agrarian “Civilizations” > Location 7063
Thus, an eleventh-century CE Muslim prince from Tabaristan wrote in a book for his son, “Make it your constant endeavor to improve cultivation and to govern well; for understand this truth: the kingdom can be held by the army, and the army by gold; and gold is acquired through agricultural development and agricultural development through justice and equity. Therefore be just and equitable.”50
Highlight (yellow) – 10. Long Trends in the Era of Agrarian “Civilizations” > Location 7068
Powerful states spent freely on large prestige projects, including cities such as the Achaemenid capital, Persepolis. Such projects were designed to overawe subjects and rivals, but they also provided employment and attracted merchants and artisans.
Highlight (yellow) – 10. Long Trends in the Era of Agrarian “Civilizations” > Location 7086
In Muscovite history, the reign of Ivan the Terrible offers a horrifying example of the dangers of excessive predation.
Highlight (yellow) – 10. Long Trends in the Era of Agrarian “Civilizations” > Location 7113
First, elites in tribute-taking societies had to be specialists in coercion and management rather than in production.
Highlight (yellow) – 10. Long Trends in the Era of Agrarian “Civilizations” > Location 7118
Stable and long-lived polities such as that of China thrived in part because they were rich enough and durable enough to maintain predictable and relatively light levels of taxation, which gave peasants a greater stake in productivity-raising innovations.57
Highlight (yellow) – 10. Long Trends in the Era of Agrarian “Civilizations” > Location 7153
as Joel Mokyr has argued, technological innovation is unlikely to happen quickly where those who work lack wealth, education, and prestige, and those who are wealthy, educated, and have prestige know nothing about productive work.
Highlight (yellow) – 10. Long Trends in the Era of Agrarian “Civilizations” > Location 7157
Exchange, Commerce, and Urbanization
Highlight (yellow) – 10. Long Trends in the Era of Agrarian “Civilizations” > Location 7165
Thus urbanization itself dampened population growth, and it did so most decisively when cities grew fastest.
Highlight (yellow) – 10. Long Trends in the Era of Agrarian “Civilizations” > Location 7289
Though tributary states normally tolerated and sometimes encouraged commerce, their predatory methods and willingness to resort to force were ever-present threats to the freedoms needed for trade to flourish. There was therefore a fundamental long-term conflict between the methods of tribute takers and those of merchants; and as long as tributary elites dominated political systems, this conflict limited the productivity-raising potential of commercial activity.
Highlight (yellow) – 10. Long Trends in the Era of Agrarian “Civilizations” > Location 7293
Part V: The Modern Era: One World
Scythians north of the Black Sea more than 2,000 years ago:
Highlight (yellow) – 11. Approaching Modernity > Location 7432
But though they are on the whole less violent, personal relations in modern urban communities also lack the intimacy and continuity of those in most traditional societies. Increasingly, they are casual, anonymous, and fleeting. These changes may help explain the loss of a clear sense of values and meaning in modern lives, a subtle and disorienting alteration in the quality of modern life that the French sociologist Émile Durkheim referred to in the late nineteenth century as “anomie.”
Highlight (yellow) – 11. Approaching Modernity > Location 7618
Interesting in light of Civility for P.M. Forni.
The German sociologist Norbert Elias has argued that these changes have reached deep within our psyches, as modern forms of work and time discipline, enforced through the market, have shaped behavior in interpersonal relations, table manners, and attitudes toward sexuality. He has shown how the “emotional economy” typical in the modern world arises out of a relaxation of external restraints combined with an intensification of internal restraints: “The compulsions arising directly from the threat of weapons and physical force gradually diminish, and . . . those forms of dependency which lead to the regulation of the affects [feelings or emotions] in the form of self-control, gradually increase.”
Highlight (yellow) – 11. Approaching Modernity > Location 7622
A system of knowledge that is good at manipulating the material world is exactly what we need. Without such knowledge, we could not possibly support a human population of 6 billion.
Highlight (yellow) – 11. Approaching Modernity > Location 7645
As Daniel Headrick writes: “Knowledge is both cause and effect of economic growth, and the information industry has been the primary cause of the acceleration of technological change in the past 200 years.”
Highlight (yellow) – 11. Approaching Modernity > Location 7685
Necessity is not always the mother of invention.
Highlight (yellow) – 11. Approaching Modernity > Location 7718
in Britain iron makers had tried to use coal for almost two centuries before Abraham Darby showed them how to use coke in the early eighteenth century.
Highlight (yellow) – 11. Approaching Modernity > Location 7728
expanding networks of exchange encouraged specialization, which stimulated innovation in productive techniques—a type of growth we can refer to as Smithian.42
Highlight (yellow) – 11. Approaching Modernity > Location 7768
From Joel Mokyr, The Lever of Riches: Technological Creativity and Economic Progress (Oxford: Oxford University Press, 1992),
Highlight (green) – 11. Approaching Modernity > Location 7772
the very nature of most premodern states suggests that as a general rule, in agrarian civilizations tribute-taking generated more wealth and certainly more power than commercial exchanges. This differential helps us understand what might at first appear puzzling: though commercial networks are as old as agrarian civilization, their impact on rates of innovation has been limited until the past two or three centuries. Why, then, did commercial exchanges suddenly become so much more significant in the modern era? Did they reach some critical threshold?
Highlight (yellow) – 11. Approaching Modernity > Location 7780
And what then is the next threshold? For think of what the Internet is doing to the entertainment industry and their reticence to go along with it.
Speaking generally, it is the steepness of this gradient of wealth that accounts for capitalism’s remarkable dynamism, just as the large temperature gradient between the Sun and the space surrounding it drives complex processes on Earth.
Highlight (yellow) – 11. Approaching Modernity > Location 7819
is the steepness of the gradient that drives wealth so efficiently through capitalist societies and that helps explain why, paradoxically, modern states have to be so much larger and more complex than the states of the tributary world.
Highlight (yellow) – 11. Approaching Modernity > Location 7823
So the onus is on the workers to ensure that their labor is productive enough to find a buyer. In this way, the economic lash can stimulate genuine, even creative, self-discipline, whereas the overseer’s whip can generate no more than grudging conformity.
Highlight (yellow) – 11. Approaching Modernity > Location 7843
J. L. Anderson’s Explaining Long-Term Economic Change (1991) is a useful introduction to the theoretical literature.
Highlight (green) – 11. Approaching Modernity > Location 7920
Robert Lopez, has called the “commercial revolution of the Middle Ages” a fundamental turning point in modern world history.
Highlight (yellow) – 12. Globalization, Commercialization, and Innovation > Location 8067
Well-to-do merchants accumulate goods and redouble their profits, while the less well-to-do sit in their shops and sell. They control the markets and daily enjoy their ease in the cities. They take advantage of the pressing needs of the government to sell at twice the normal price. Their sons do not plough or hoe. Their daughters do not raise silkworms or weave. They have fancy clothing and stuff themselves on millet and meat. They earn fortunes while suffering none of the hardships which the farmers suffer. Their wealth enables them to hobnob with princes and marquises, and to dispose of greater power than the officials.29
Highlight (yellow) – 12. Globalization, Commercialization, and Innovation > Location 8185
This quote about 2nd century BCE China sounds a lot like modern day China.
this process was completed by 1279 after the conquest of South China by the Mongols under Kublai Khan. After reunification, two of the three conditions encouraging states to support commercialization (small size and intense rivalries) vanished, and the third (easy access to rich trading systems) lasted only slightly longer.
Highlight (yellow) – 12. Globalization, Commercialization, and Innovation > Location 8270
Charles Tilly’s Coercion, Capital, and European States, AD 990–1992 (rev. ed., 1992).
Highlight (green) – 12. Globalization, Commercialization, and Innovation > Location 8567
Indeed, Spain depended so heavily on American silver that when the supply ran out in the seventeenth century, its commercial and political influence declined.
Highlight (yellow) – 12. Globalization, Commercialization, and Innovation > Location 8628
Highlight (orange) – 12. Globalization, Commercialization, and Innovation > Location 8631
wealth. The mercantilist policies of European states in the seventeenth century—such as the Navigation Acts of the English commonwealth, which protected British commerce within British colonies—are good examples of new government attitudes toward commerce and the actions that these changes encouraged. Also illustrating this trend is the proliferation throughout Europe of patent laws, which were pioneered in Venice in the fifteenth century. Governments also began to promote innovation through the founding of scientific societies or the offering of prizes.
Highlight (yellow) – 12. Globalization, Commercialization, and Innovation > Location 8641
Over time, commercialization transformed traditional tributary elites. Such transformation was most likely to occur when demands on elite incomes rose sharply in environments where commercial revenues were available for the taking. The English wool trade offers a classic example, for it tempted landowners to clear the land of tenants and replace them with sheep, particularly in the sixteenth century, when new land became available as a result of the dissolution of the monasteries.
Highlight (yellow) – 12. Globalization, Commercialization, and Innovation > Location 8648
“it is gain, whether vile or sordid, that derogates from nobility, whose proper role is to live off rents.”
Highlight (yellow) – 12. Globalization, Commercialization, and Innovation > Location 8656
the invention in France of the Jacquard loom, which pioneered the use of digital coding as a form of mechanical control (1801);
Highlight (yellow) – 13. Birth of the Modern World > Location 8951
As early as 1837, the French revolutionary Blanqui used the term industrial revolution
Highlight (yellow) – 13. Birth of the Modern World > Location 8956
For most rural dwellers, these changes were catastrophic.
Highlight (yellow) – 13. Birth of the Modern World > Location 9024
This is now what is happening in most of the rest of the world now.
The appearance of societies in which most people depended entirely on markets for their subsistence was a new phenomenon, and it gave a tremendous stimulus to commercial production of goods of mass consumption.
Highlight (yellow) – 13. Birth of the Modern World > Location 9097
The idea that atmospheric pressure was a potential source of mechanical power had a history going back at least to the sixteenth century, and it may have been familiar in China as well as in Europe.23
Highlight (yellow) – 13. Birth of the Modern World > Location 9126
In 1718, a new owner, Thomas Lombe, in an early example of planned industrial espionage, stole techniques already in use in Italy to set up an improved factory.
Highlight (yellow) – 13. Birth of the Modern World > Location 9137
Richard Arkwright’s water frame, James Hargreaves’s spinning jenny, and Samuel Crompton’s spinning mule, a modification of the jenny.24
Highlight (yellow) – 13. Birth of the Modern World > Location 9140
Karl Polanyi argues in a classic study of modernity,
Highlight (green) – 13. Birth of the Modern World > Location 9336
Where literacy spread, knowledge became more abstract and less personal, and abstract knowledge began to acquire an authority quite independent from the prestige of particular teachers.
Highlight (yellow) – 13. Birth of the Modern World > Location 9375
In the nineteenth century, beginning in Germany, science itself began to be incorporated into entrepreneurial activity as companies set up laboratories specifically to raise productivity and profits. By the late nineteenth century, scientific research was taking a leading role in processes of innovation that might have simply petered out if they had continued to rely on the technical and practical skills of individual entrepreneurs and artisans.
Highlight (yellow) – 13. Birth of the Modern World > Location 9389
Think about how this is done now and how much of it is done by universities instead of by industry. Where is his innovation happening in the future?
The modern world is ruled by larger and more impersonal forces, from faceless bureaucracies to abstractions such as “inflation,” or “the rule of law.” Where abstract forces take over the work of coercion from the landlord, the executioner, and the overseer, it is not surprising that there should emerge cosmologies ruled by equally abstract forces.
Highlight (yellow) – 13. Birth of the Modern World > Location 9395
Joel Mokyr, The Lever of Riches (1990),
Highlight (green) – 13. Birth of the Modern World > Location 9532
Charles Tilly, Coercion, Capital, and European States, AD 990–1992 (rev. ed., 1992), is good on some of the political changes associated with the Industrial Revolution.
Highlight (green) – 13. Birth of the Modern World > Location 9533
During the “great depression” of the 1870s, it became apparent for the first time that economic growth could falter because of overproduction as well as underproduction.
Highlight (yellow) – 14. The Great Acceleration of the Twentieth Century > Location 9700
Over the following decades, it became clear that in a world of steadily increasing productivity, the problem of finding (or creating) markets would shape the rhythms of economic activity much as the problem of insufficient productivity had done in the agrarian era. As a result, the modern era is dominated by cycles of activity with a different (normally a shorter) periodicity, which we know as business cycles.
Highlight (yellow) – 14. The Great Acceleration of the Twentieth Century > Location 9702
Indeed, lifestyles have changed so greatly that they may be exerting a significant evolutionary impact on human bodies.
Highlight (yellow) – 14. The Great Acceleration of the Twentieth Century > Location 9715
The tensions and dislocations of the hurricane of change affecting the entire globe will ensure that conflict remains endemic, and modern weaponry will ensure that local conflicts continue to cause great suffering.
Highlight (yellow) – 14. The Great Acceleration of the Twentieth Century > Location 10017
Lester Brown argues that “while the Agricultural Revolution transformed the earth’s surface, the Industrial Revolution is transforming the earth’s atmosphere.”
Highlight (yellow) – 14. The Great Acceleration of the Twentieth Century > Location 10049
Part VI: Perspectives On The Future
“With chaos, it is sensitivity to initial conditions that makes the dynamics unpredictable. With emergent properties, it is the general inability of observers to predict the behavior of nonlinear systems from an understanding of their parts and interactions.”
Highlight (yellow) – 15. Futures > Location 10163
it is better than doing nothing at all, just as studying the form at a racetrack is better than tossing a coin. In the long run, you will end up with more money if you study the form.
Highlight (yellow) – 15. Futures > Location 10245
the space technologies envisioned by the Russian schoolteacher Konstantin Tsiolkovsky, which enabled the first human to leave Earth on 12 April 1961 and the first human to land on another heavenly body on 21 July 1969,
Highlight (yellow) – 15. Futures > Location 10468
Appendix 2: Chaos and Order
But the patterns we detect are really there, and their existence is one of the great puzzles of the universe. Why is there order of any kind? And what rules allow the creation and evolution of ordered structures?
Highlight (yellow) – Location 10964
On Earth, the temperature differential between our sun and surrounding space provides the free energy needed to create most forms of complexity, including ourselves; energies created early in the history of our solar system drive the internal heat battery of Earth, which drives plate tectonics. These differentials enable energy to flow, and energy flows make patterns possible. And given enough time, the mere possibility of pattern makes it likely that patterns of many different kinds will eventually appear.
Highlight (yellow) – Location 11024
After the first problem—explaining how order of any kind is possible—is addressed, the second problem remains. How did complex entities emerge, and, once they had emerged, how did they sustain themselves long enough to be noticed by us (or to be us)?
Highlight (yellow) – Location 11037
Paradoxically, the tendency toward increasing entropy—the drive toward disorder—may itself be the engine that creates order.
Highlight (yellow) – Location 11039
The drive toward disorder seems to create new forms of order, just as the energy of falling water can cause droplets of water to splash upward, or a river’s current can create eddies in which small amounts of water flow against the main current.
Highlight (yellow) – Location 11044
Roughly speaking, the more complex a phenomenon is, the denser the energy flows it must juggle and the more likely it is to break down. So we should expect that as entities become more complex, they become less stable, shorter-lived, and rarer. Perhaps even a slight increase in complexity can sharply increase their fragility and, therefore, their scarcity.
Highlight (yellow) – Location 11064
What we can do is to describe some of the ways in which complex structures emerge. The fundamental rule seems to be that complexity normally emerges step by step, linking already existing patterns into larger and more complex patterns at different scales.
Highlight (yellow) – Location 11072
new rules of construction and change seem to come into play. These are known as emergent properties,
Highlight (yellow) – Location 11076
“Leibig’s Law of the Minimum . . . states that populations will be limited by critical resources (e.g., water) that are in shortest supply” (Allen W. Johnson and Timothy Earle, The Evolution of Human Societies, 2nd ed. [Stanford: Stanford University Press, 2000], pp. 14–15).
Highlight (green) – Location 11456
articles, “Immunological Time Scale for Hominid Evolution”; it was published in Science, 1 December 1967, pp. 1200–1203.
Highlight (green) – Location 11492
There is a good short survey of theories of growth in J. L. Anderson, Explaining Long-Term Economic Change (Basingstoke: Macmillan, 1991); and see the survey in Mokyr, The Lever of Riches, chap. 7 (“Understanding Technological Progress”).
Highlight (green) – Location 12288
Guide to highlight colors

Yellow–general highlights and highlights which don’t fit under another category below
Orange–Vocabulary word; interesting and/or rare word
Green–Reference to read
Blue–Interesting Quote
Gray–Typography Problem
Red–Example to work through

Editor’s Note: Data relating to reading progress was added to this post on 10/21/16. Data relating to highlights, quotes, and marginalia added on 10/23/16.

Syndicated copies to:

Mathematics in Popular Science Books | The Economist

Big bang (The Economist)
Popular physics has enjoyed a new-found regard. Now comes a brave attempt to inject mathematics into an otherwise fashionable subject

This review of Brian Cox and Jeff Forshaw’s forthcoming book The Quantum Universe: Everything That Can Happen Does Happen sounds intriguing. I’m highly impressed that so much of the review focuses on the author’s decision to include a more mathematical treatment of their subject for what is supposed to be a popular science book. I always wish books like these at least had the temerity to include much more in the way of the mathematical underpinnings of their subjects; I’m glad that the popular press (or at least The Economist in this case) is willing to be asking for the mathematics as well. Hopefully it will mark a broader trend in popular books on scientific topics!

Fundamental physics

Big bang

Popular physics has enjoyed a new-found regard. Now comes a brave attempt to inject mathematics into an otherwise fashionable subject

Nov 5th 2011 | from the print edition

The Quantum Universe: Everything That Can Happen Does Happen. By Brian Cox and Jeff Forshaw. Allen Lane; 255 pages; £20. To be published in America in January by Da Capo Press; $25.

PREVIOUSLY the preserve of dusty, tweed-jacketed academics, physics has enjoyed a surprising popular renaissance over the past few years. In America Michio Kaku, a string theorist, has penned several successful books and wowed television and radio audiences with his presentations on esoteric subjects such as the existence of wormholes and the possibility of alien life. In Britain Brian Cox, a former pop star whose music helped propel Tony Blair to power, has become the front man for physics, which recently regained its status as a popular subject in British classrooms, an effect many attribute to Mr Cox’s astonishing appeal.

Mr Cox, a particle physicist, is well-known as the presenter of two BBC television series that have attracted millions of viewers (a third series will be aired next year) and as a bestselling author and public speaker. His latest book, “The Quantum Universe”, which he co-wrote with Jeff Forshaw of the University of Manchester, breaks the rules of popular science-writing that were established over two decades ago by Stephen Hawking, who launched the modern genre with his famous book, “A Brief History of Time”.

Mr Hawking’s literary success was ascribed to his eschewing equations. One of his editors warned him that sales of the book would be halved by every equation he included; Mr Hawking inserted just one, E=mc2, and, even then, the volume acquired a sorry reputation for being bought but not read. By contrast, Mr Cox, whose previous book with Mr Forshaw investigated “Why does E=mc2?” (2009), has bravely sloshed a generous slug of mathematics throughout his texts.

The difficulties in explaining physics without using maths are longstanding. Einstein mused, “The eternal mystery of the world is its comprehensibility,” and “the fact that it is comprehensible is a miracle.” Yet the language in which the world is described is that of maths, a relatively sound grasp of which is needed to comprehend the difficulties that physicists are trying to resolve as well as the possible solutions. Mr Cox has secured a large fan base with his boyish good looks, his happy turns of phrase and his knack for presenting complex ideas using simple analogies. He also admirably shies away from dumbing down. “The Quantum Universe” is not a dry undergraduate text book, but nor is it a particularly easy read.

The subject matter is hard. Quantum mechanics, which describes in subatomic detail a shadowy world in which cats can be simultaneously alive and dead, is notoriously difficult to grasp. Its experiments yield bizarre results that can be explained only by embracing the maths that describe them, and its theories make outrageous predictions (such as the existence of antimatter) that have nevertheless later been verified. Messrs Cox and Forshaw say they have included the maths “mainly because it allows us to really explain why things are the way they are. Without it, we should have to resort to the physicist-guru mentality whereby we pluck profundities out of thin air, and neither author would be comfortable with guru status.”

That stance might comfort the authors, but to many readers they will nonetheless seem to pluck equations out of thin air. Yet their decision to include some of the hard stuff leaves open the possibility that some readers might actually engage in the slog that leads to higher pleasures. For non-sloggers alternative routes are offered: Messrs Cox and Forshaw use clockfaces to illustrate how particles interact with one another, a drawing of how guitar strings twang and a photograph of a vibrating drum. A diagram, rather than an equation, is used to explain one promising theory of how matter acquires mass, a question that experiments on the Large Hadron Collider at CERN, the European particle-physics laboratory near Geneva, will hopefully soon answer.

The authors have wisely chosen to leaven their tome with amusing tales of dysfunctional characters among scholars who developed quantum mechanics in the 1920s and beyond, as well as with accounts of the philosophical struggles with which they grappled and the occasional earthy aside. Where the subject matter is a trifle dull, Messrs Cox and Forshaw acknowledge it: of Heinrich Kayser, who a century ago completed a six-volume reference book documenting the spectral lines generated by every known element, they observe, “He must have been great fun at dinner parties.” And they make some sweeping generalisations about their colleagues who pore over equations, “Physicists are very lazy, and they would not go to all this trouble unless it saved time in the long run.”

Whether or not readers of “The Quantum Universe” will follow all the maths, the authors’ love for their subject shines through the book. “There is no better demonstration of the power of the scientific method than quantum theory,” they write. That may be so, but physicists all over the world, Messrs Cox and Forshaw included, are longing for the next breakthrough that will supersede the claim. Hopes are pinned on experiments currently under way at CERN that may force physicists to rethink their understanding of the universe, and inspire Messrs Cox and Forshaw to write their next book—equations and all.

from the print edition | Books and arts