🔖 The Hypercycle: A Principle of Natural Self-Organization | Springer

The Hypercycle - A Principle of Natural Self-Organization | M. Eigen | Springer by Manfred Eigen and Peter Schuster (Springer, 1979)
This book originated from a series of papers which were published in "Die Naturwissenschaften" in 1977178. Its division into three parts is the reflection of a logic structure, which may be abstracted in the form of three theses:

A. Hypercycles are a principle of natural self-organization allowing an inte­gration and coherent evolution of a set of functionally coupled self-rep­licative entities.

B. Hypercycles are a novel class of nonlinear reaction networks with unique properties, amenable to a unified mathematical treatment.

C. Hypercycles are able to originate in the mutant distribution of a single Darwinian quasi-species through stabilization of its diverging mutant genes. Once nucleated hypercycles evolve to higher complexity by a process analogous to gene duplication and specialization. In order to outline the meaning of the first statement we may refer to another principle of material self organization, namely to Darwin's principle of natural selection. This principle as we see it today represents the only understood means for creating information, be it the blue print for a complex living organism which evolved from less complex ancestral forms, or be it a meaningful sequence of letters the selection of which can be simulated by evolutionary model games.

Part A in .pdf format.

Syndicated copies to:

Design and Control of Self-organizing Systems

Design and Control of Self-organizing Systems by Carlos Gershenson (scifunam.fisica.unam.mx)

UNAM Mexico City has an available free download of Carlos Gershenson’s 2007 text.

Complex systems are usually difficult to design and control. There are several particular methods for coping with complexity, but there is no general approach to build complex systems. In this book I propose a methodology to aid engineers in the design and control of complex systems. This is based on the description of systems as self-organizing. Starting from the agent metaphor, the methodology proposes a conceptual framework and a series of steps to follow to find proper mechanisms that will promote elements to find solutions by actively interacting among themselves.

Design and Control of Self-organizing Systems by Carlos Gershenson (2007)
Design and Control of Self-organizing Systems by Carlos Gershenson (2007)
Syndicated copies to: