How to Bake Pi: An Edible Exploration of the Mathematics of Mathematics | Category Theory

Eugenia Cheng's new book How to Bake Pi: An Edible Exploration of the Mathematics of Mathematics helps to introduce the public to category theory.

For those who are intimidated by the thought of higher mathematics, but are still considering joining our Category Theory Summer Study Group, I’ve just come across a lovely new book by Eugenia Cheng entitled How to Bake Pi: An Edible Exploration of the Mathematics of Mathematics.

Eugenia Cheng's book How to Bake Pi
Eugenia Cheng’s book How to Bake Pi

It just came out in the U.S. market on May 5, 2015, so it’s very new in the market. My guess is that even those who aren’t intimidated will get a lot out of it as well. A brief description of the book follows:

“What is math? How exactly does it work? And what do three siblings trying to share a cake have to do with it? In How to Bake Pi, math professor Eugenia Cheng provides an accessible introduction to the logic and beauty of mathematics, powered, unexpectedly, by insights from the kitchen: we learn, for example, how the béchamel in a lasagna can be a lot like the number 5, and why making a good custard proves that math is easy but life is hard. Of course, it’s not all cooking; we’ll also run the New York and Chicago marathons, pay visits to Cinderella and Lewis Carroll, and even get to the bottom of a tomato’s identity as a vegetable. This is not the math of our high school classes: mathematics, Cheng shows us, is less about numbers and formulas and more about how we know, believe, and understand anything, including whether our brother took too much cake.

At the heart of How to Bake Pi is Cheng’s work on category theory—a cutting-edge “mathematics of mathematics.” Cheng combines her theory work with her enthusiasm for cooking both to shed new light on the fundamentals of mathematics and to give readers a tour of a vast territory no popular book on math has explored before. Lively, funny, and clear, How to Bake Pi will dazzle the initiated while amusing and enlightening even the most hardened math-phobe.”

Dr. Cheng recently appeared on NPR’s Science Friday with Ira Flatow to discuss her book.  You can listen to the interview below. Most of the interview is about her new book. Specific discussion of category theory begins about 14 minutes into the conversation.

Eugenia Cheng, mathematician
Eugenia Cheng, mathematician

Dr. Eugenia Cheng can be followed on Twitter @DrEugeniaCheng. References to her new book as well as some of her syllabi and writings on category theory have been added to our Category Theory resources pages for download/reading.

Syndicated copies to:

8th Annual North American School of Information Theory (NASIT)

8th Annual North American School of Information Theory (NASIT) (nasit15.ucsd.edu)

August 10-13, 2015 – UC San Diego, La Jolla, California
Application deadline: June 7, 2015

The School of Information Theory will bring together over 100 graduate students, postdoctoral scholars, and leading researchers for four action-packed days of learning, stimulating discussions, professional networking and fun activities, all on the beautiful campus of the University of California, San Diego (UCSD) and in the nearby beach town of La Jolla.

  • Tutorials by some of the best known researchers in information theory and related fields
  • Poster presentations by student participants with feedback and discussion
  • Panel discussion on “IT: Academia vs. Industry Perspectives”
  • Social events and fun activities
Syndicated copies to:

BIRS Workshop: Advances and Challenges in Protein-RNA: Recognition, Regulation and Prediction (15w5063)

15w5063: Advances and Challenges in Protein-RNA: Recognition, Regulation and Prediction (Banff International Research Station | birs.ca)
BIRS 5 day worksop, arriving in Banff, Alberta Sunday, June 7 and departing Friday, June 12, 2015

In the years since the first assembly of the human genome, the complex and vital role of RNA and RNA binding proteins in regulation of the genome expression has expanded through the discovery of RNA-binding proteins and large classes of non-coding RNA that control many developmental decisions as part of protein- RNA complexes. Our molecular level understanding of RNA regulation has dramatically improved as many new structures of RNA–protein complexes have been determined and new sophisticated experimental technologies and dedicated computational modeling have emerged to investigate these interactions at the whole-genome level. Further deep insight on the molecular mechanisms that underline genome expression regulation is critical for understanding fundamental biology and disease progression towards the discovery of new approaches to interfere with disease progression.

The proposed workshop will bring together experts in RNA biology with structural biologists that focus on RNA-protein complexes, as well as computational biologists who seek to model and develop predictive tools based on the confluence of these experimental advances. The workshop intends to foster new collaborations between experimental and computational biologists and catalyze the development of new and improved technologies (such as single cell binding methods) that merge experimental analysis with novel mathematical and computational techniques to better understand the rules of protein-RNA recognition and RNA-based biological regulation.

The organizers of the workshop are both leaders in the field of protein-RNA recognition and interactions: Yael Mandel-Gutfreund has been working in the field of protein-Nucleic Acids interactions since 1994. Her main research interest is protein-RNA recognition and regulation. She has developed several tools and web servers for predicting RNA binding proteins and RNA binding motifs. Yael is the head to the computational molecular laboratory at the Technion and the president of the Israeli society of Bioinformatics and Computational Biology. Gabriele Varani has been working in the field of RNA structure and protein-RNA interactions since 1987. His main research interest is the structural basis for protein-RNA recognition and the prediction and design of RNA-binding proteins. He determined some of the first few structures of protein-RNA complexes and developed computational tools to analyze and predict the specificity of RNA -binding proteins. His group applies these tools to design RNA-binding proteins with new specificity to control gene expression. Our invitation to participate in the workshop has been met with great enthusiasm by the researchers. More than 20 principle investigators have already confirmed their interest in attending. Six of the confirmed participants are female scientists including the organizer Yael Mandel-Gutfreund as well as Traci Hall, Lynne Maquat, Elena Conti, Susan Jones, Drena Dobbs. We also have invited and confirmed the participation of young and promising researchers including Markus Landthaler, Gene Yeo, Jernej Ule, Uwe Ohler and others. Our confirmed participants come from many different countries: US, Canada, UK, Scotland, Germany, Spain, Switzerland, Poland and Israel. Two confirmed participants as well as the organizer have attended the BIRS workshops in the past.

A key objective of the workshop is to bring together researchers with experimental, mathematical and computational background to share results and discuss the main advances and challenges in the prediction, analysis and control of RNA-protein recognition and RNA-based regulation of gene expression. Towards this aim, we plan to adopt the format of previous BIRS meetings in which invited participants (including selected students) will present relatively short presentations of 20 minutes plus 10 minutes of active discussions. This format will leave aside ample time for informal discussions to foster exchanges between participants. To stress the collaborative, multidisciplinary nature of the workshop, we plan to dedicate each of the workshop sessions to a specific topic that will comprise presentations of structural, experimental and computational approaches, rather than create session focused on a particular approach. Each session we will include at least one lecture from a young scientist/postdoctoral fellow/student to be chosen among attendees by the organizers.

Suggested preliminary schedule:

  • Day 1: Modeling and high throughput approaches to genome-wide analysis of protein-RNA interactions
  • Day 2: Predicting and designing new RNA binding proteins
  • Day 3: Generating and modeling RNA-based regulatory networks
  • Day 4: Principles of RNA regulation by RNA binding proteins
  • Day 5: Conclusion round table discussion on the present and future challenges of the field
Syndicated copies to:

Richard Dawkins Interview: This Is My Vision Of “Life” | Edge.org

This Is My Vision Of "Life" by John Brockman (edge.org)
The Edge.org's interview with Richard Dawkins.

Richard Dawkins [4.30.15]

“My vision of life is that everything extends from replicators, which are in practice DNA molecules on this planet. The replicators reach out into the world to influence their own probability of being passed on. Mostly they don’t reach further than the individual body in which they sit, but that’s a matter of practice, not a matter of principle. The individual organism can be defined as that set of phenotypic products which have a single route of exit of the genes into the future. That’s not true of the cuckoo/reed warbler case, but it is true of ordinary animal bodies. So the organism, the individual organism, is a deeply salient unit. It’s a unit of selection in the sense that I call a “vehicle”.  There are two kinds of unit of selection. The difference is a semantic one. They’re both units of selection, but one is the replicator, and what it does is get itself copied. So more and more copies of itself go into the world. The other kind of unit is the vehicle. It doesn’t get itself copied. What it does is work to copy the replicators which have come down to it through the generations, and which it’s going to pass on to future generations. So we have this individual replicator dichotomy. They’re both units of selection, but in different senses. It’s important to understand that they are different senses.”

Richard Dawkins
Richard Dawkins

RICHARD DAWKINS is an evolutionary biologist; Emeritus Charles Simonyi Professor of the Public Understanding of Science, Oxford; Author, The Selfish Gene; The Extended Phenotype; Climbing Mount Improbable; The God Delusion; An Appetite For Wonder; and (forthcoming) A Brief Candle In The Dark.

Watch the entire video interview and read the transcript at Edge.org.

Syndicated copies to:

Category Theory – the bedrock of mathematics? via Ilyas Khan | LinkedIn

Category Theory - the bedrock of mathematics ? by Ilyas KhanIlyas Khan (LinkedIn Pulse)

Category theory looks set to become the dominant foundational basis for all mathematics. It could, in fact, already have achieved that status through stealth.

Beauty, even in Maths, can exist in the eye of the beholder. That might sound a little surprising, when, after all, what could be more objective than mathematics when thinking about truth, and what, therefore, could be more natural than for beauty and goodness, the twin accomplices to truth, to be co-joined ?

In the 70 odd years since Samuel Eilenberg and Saunders Mac Lane published their now infamous paper “A General Theory of Natural Equivalences“, the pursuit of maths by professionals (I use here the reference point definition of Michael Harris – see his recent publication “Mathematics without Apologies“) has become ever more specialised. I, for one, don’t doubt cross disciplinary excellence is alive and sometimes robustly so, but the industrially specialised silos that now create, produce and then sustain academic tenure are formidable within the community of mathematicians.

Beauty, in the purest sense, does not need to be captured in a definition but recognised through intuition. Whether we take our inspiration from Hardy or Dirac, or whether we experience a gorgeous thrill when encountering an austere proof that may have been confronted thousands of times before, the confluence of simplicity and beauty in maths may well be one of the few remaining places where the commonality of the “eye” across a spectrum of different beholders remains at its strongest.

Neither Eilenberg nor Mac Lane could have thought that Category theory, which was their attempt to link topology and algebra, would become so pervasive or so foundational in its influence when they completed and submitted their paper in those dark days of WW 2. But then neither could Cantor, have dreamt about his work on Set theory being adopted as the central pillar of “modern” mathematics so soon after his death. Under attack from establishment figures such as Kronecker during his lifetime, Cantor would not have believed that set theory would become the central edifice around which so much would be constructed.

Of course that is exactly what has happened. Set theory and the ascending magnitude of infinities that were unleashed through the crack in the door that was represented by Cantor’s diagonal conquered all before them.

Until now, that is.

In an article in Science News, Julie Rehmeyer describes Category Theory as “perhaps the most abstract area of all mathematics” and “where math is the abstraction of the real world, category theory is an abstraction of mathematics”.

Slowly, without fanfare, and with an alliance built with the emergent post transistor age discipline of computer science, Category theory looks set to become the dominant foundational basis for all mathematics. It could, in fact, already have achieved that status through stealth. After all, if sets are merely an example of a category, they become suborned without question or query. One might even use the description ‘subsumed’.

There is, in parallel, a wide ranging discussion in mathematics about the so called Univalent Foundation that is most widely associated with Voevodsky which is not the same. The text book produced for the year long univalence programme iniated at the IAS that was completed in 2013 Homotopy type theory – Univalent Foundations Programme states:

“The univalence ax-iom implies, in particular, that isomorphic structures can be identified, a principle that mathematicians have been happily using on workdays, despite its incompatibility with the “official”doctrines of conventional foundations..”

before going on to present the revelatory exposition that Univalent Foundations are the real unifying binding agent around mathematics.

I prefer to think of Voevodsky’s agenda as being narrower in many crucial respects than Category Theory, although both owe a huge amount to the over-arching reach of computational advances made through the mechanical aid proffered through the development of computers, particularly if one shares Voevodsky’s view that proofs will eventually have to be subject to mechanical confirmation.

In contrast, the journey, post Russell, for type theory based clarificatory approaches to formal logic continues in various ways, but Category theory brings a unifying effort to the whole of mathematics that had to wait almost two decades after Eilenberg and Mac Lane’s paper when a then virtually unknown mathematician, William Lawvere published his now much vaunted “An Elementary Theory of the Category of Sets” in 1964. This paper, and the revolutionary work of Grothendieck (see below) brought about a depth and breadth of work which created the environment from which Category Theory emerged through the subsequent decades until the early 2000’s.

Lawvere’s work has, at times, been seen as an attempt to simply re-work set theory in Category theoretic terms. This limitation is no longer prevalent, indeed the most recent biographical reviews of Grothendieck, following his death, assume that the unificatory expedient that is the essential feature of Category theory (and I should say here not just ETCS) is taken for granted, axiomatic, even. Grothendieck eventually went much further than defining Category theory in set theoretic terms, with both Algebraic Topology and Mathematical Physics being fields that now could not be approached without a foundational setting that is Category theory. The early language and notation of Category Theory where categories ‘C’ are described essentially as sets whose members satisfy the conditions of composition, morphism and identity eventually gave way post Lawvere and then Lambek to a systematic adoption of the approach we now see where any and all deductive systems can be turned into categories. Most standard histories give due credit to Eilenberg and Mac Lane as well as Lawvere (and sometimes Cartan), but it is Grothendieck’s ‘Sur quelques points d’algebre homologique’ in 1957 that is now seen as the real ground breaker.

My own pathway to Category theory has been via my interest in Lie Groups, and more broadly, in Quantum Computing, and it was only by accident (the best things really are those that come about by accident !) that I decided I had better learn the language of Category theory when I found Lawvere’s paper misleadingly familiar but annoyingly distant when, in common with most people, I assumed that my working knowledge of notation in logic and in set theory would map smoothly across to Category theory. That, of course, is not the case, and it was only after I gained some grounding in this new language that I realised just how and why Category theory has an impact far beyond computer science. It is this journey that also brings me face to face with a growing appreciation of the natural intersection between Category theory and a Wittgensteinian approach to the Philosophy of Mathematics. Wittgenstein’s disdain for Cantor is well documented (this short note is not an attempt to justify, using Category theory, a Wittgensteinian criticism of set theory). More specifically however, it was Abramsky and Coecke’s “Categorical Quantum Mechanics” that helped me to discern more carefully the links between Category Theory and Quantum Computing. They describe Category Theory as the ‘language of modern structural mathematics’ and use it as the tool for building a mathematical representation of quantum processes, and their paper is a thought provoking nudge in the ribs for anyone who is trying to make sense of the current noise that surrounds Quantum mechanics.

Awodey and Spivak are the two most impressive contemporary mathematicians currently working on Category Theory in my view, and whilst it is asking for trouble to choose one or two selected works as exemplars of their approach, I would have to say that Spivak’s book on Category Theory for the Sciences is the standout work of recent times  (incidentally the section in this book on ‘aspects’ bears close scrutiny with Wittgenstein’s well known work on ‘family resemblances’).

Awodey’s 2003 paper is as good a recent balance between a mathematical and philosophical exposition of the importance of category theory as exists  whilst his textbook is often referred to as the standard entry point for working mathematicians.

Going back to beauty, which is how I started this short note. Barry Mazur wrote an article in memory of Saunders Mac Lane titled ‘When is one thing equal to another‘ which is a gem of rare beauty, and the actual catalyst for this short note. If you read only one document in the links from this article, then I hope it is Mazur’s paper.

Syndicated copies to:

Probability Models for DNA Sequence Evolution

Probability Models for DNA Sequence Evolution (Springer, 2008, 2nd Edition) by Rick Durrett (math.duke.edu)

While browsing through some textbooks and researchers today, I came across a fantastic looking title: Probability Models for DNA Sequence Evolution by Rick Durrett (Springer, 2008). While searching his website at Duke, I noticed that he’s made a .pdf copy of a LaTeX version of the 2nd edition available for download.   I hope others find it as interesting and useful as I do.

I’ll also give him a shout out for being a mathematician with a fledgling blog: Rick’s Ramblings.

Book Cover of Probability Models for DNA Sequence Evolution by Richard Durrett
Probability Models for DNA Sequence Evolution by Richard Durrett
Syndicated copies to:

Free E-Book: Neural Networks and Deep Learning by Michael Nielsen

Neural networks and deep learning by Michael A. Nielsen (neuralnetworksanddeeplearning.com)

Michael A. Nielsen, the author of one of our favorite books on Quantum Computation and Quantum Information, is writing a new book entitled Neural Networks and Deep Learning. He’s been releasing portions of it for free on the internet in draft form every two or three months since 2013. He’s also maintaining an open code repository for the book on GitHub.

Michael A. Nielsen
Michael A. Nielsen
Syndicated copies to:

The Postdoctoral Experience (Revisited)

The Postdoctoral Experience Revisited (2014) (The National Academies Press)
The Postdoctoral Experience Revisited builds on the 2000 report Enhancing the Postdoctoral Experience for Scientists and Engineers. That ground-breaking report assessed the postdoctoral experience and provided principles, action points, and recommendations to enhance that experience. Since the publication of the 2000 report, the postdoctoral landscape has changed considerably. The percentage of PhDs who pursue postdoctoral training is growing steadily and spreading from the biomedical and physical sciences to engineering and the social sciences. The average length of time spent in postdoctoral positions seems to be increasing. The Postdoctoral Experience Revisited reexamines postdoctoral programs in the United States, focusing on how postdocs are being guided and managed, how institutional practices have changed, and what happens to postdocs after they complete their programs. This book explores important changes that have occurred in postdoctoral practices and the research ecosystem and assesses how well current practices meet the needs of these fledgling scientists and engineers and of the research enterprise. The Postdoctoral Experience Revisited takes a fresh look at current postdoctoral fellows - how many there are, where they are working, in what fields, and for how many years. This book makes recommendations to improve aspects of programs - postdoctoral period of service, title and role, career development, compensation and benefits, and mentoring. Current data on demographics, career aspirations, and career outcomes for postdocs are limited. This report makes the case for better data collection by research institution and data sharing. A larger goal of this study is not only to propose ways to make the postdoctoral system better for the postdoctoral researchers themselves but also to better understand the role that postdoctoral training plays in the research enterprise. It is also to ask whether there are alternative ways to satisfy some of the research and career development needs of postdoctoral researchers that are now being met with several years of advanced training. Postdoctoral researchers are the future of the research enterprise. The discussion and recommendations of The Postdoctoral Experience Revisited will stimulate action toward clarifying the role of postdoctoral researchers and improving their status and experience.

The National Academy of Sciences has published a (free) book: The Postdoctoral Experience (Revisited) discussing where we’re at and some ideas for a way forward.

Most might agree that our educational system is far less than ideal, but few pay attention to significant problems at the highest levels of academia which are holding back a great deal of our national “innovation machinery”. The National Academy of Sciences has published a (free) book: The Postdoctoral Experience (Revisited) discussing where we’re at and some ideas for a way forward. There are some interesting ideas here, but we’ve still got a long way to go.

Book cover of The Postdoctoral Experience Revisited (2014)
The Postdoctoral Experience Revisited (2014) | National Academies Press

2014 Fields Medal and Nevanlinna Prize Winners Announced

Here's some of the best coverage I've seen about yesterday's awards.

The 2014 Fields Medal and Nevanlinna Prize winners were announced yesterday.

General announcement

Nature: “Iranian is first woman to nab highest prize in maths”
Also includes coverage of the Gauss Prize for research that has had an impact outside mathematics, which was awarded to Stanley Osher of the University of California at Los Angeles.)

Great personal profiles with short videos via Quanta Magazine

Artur AvilaA Brazilian Wunderkind Who Calms Chaos

Manjul BhargavaThe Musical, Magical Number Theorist

Martin HairerIn Noisy Equations, One Who Heard Music

Maryam MirzakhaniA Tenacious Explorer of Abstract Surfaces

Subhash KhotA Grand Vision for the Impossible

Technical explanation of their work

Terry Tao (previous Fields Medal Winner): Avila, Bhargava, Hairer, Mirzakhani

 

 

Syndicated copies to:

Academy of Motion Picture Arts & Sciences study on The Digital Dilemma

With a slight nod toward the Academy’s announcements of the Oscar nominees this morning, there’s something more interesting which they’ve recently released which hasn’t gotten nearly as much press, but portends to be much more vital in the long run.

Academy_awards

As books enter the digital age and we watch the continued convergence of rich media like video and audio enter into e-book formats with announcements last week like Apple’s foray into digital publishing, the ability to catalog, maintain and store many types of digital media is becoming an increasing problem.  Last week the Academy released part two of their study on strategic issues in archiving and accessing digital motion picture materials in their report entitled The Digital Dilemma 2. Many of you will find it interesting/useful, particularly in light of the Academy’s description

The Digital Dilemma 2 reports on digital preservation issues facing communities that do not have the resources of large corporations or other well-funded institutions: independent filmmakers, documentarians and nonprofit audiovisual archives.

Clicking on the image of the report below provides some additional information as well as the ability (with a simple login) to download a .pdf copy of their entire report.

Digitaldilemma

There is also a recent Variety article which gives a more fully fleshed out overview of many of the issues at hand.

In the meanwhile, if you’re going to make a bet in this year’s Oscar pool, perhaps putting your money on the “Digital Dilemma” might be more useful than on Brad Pitt for Best Actor in “Moneyball”?

Mathematics in Popular Science Books | The Economist

Big bang (The Economist)
Popular physics has enjoyed a new-found regard. Now comes a brave attempt to inject mathematics into an otherwise fashionable subject

This review of Brian Cox and Jeff Forshaw’s forthcoming book The Quantum Universe: Everything That Can Happen Does Happen sounds intriguing. I’m highly impressed that so much of the review focuses on the author’s decision to include a more mathematical treatment of their subject for what is supposed to be a popular science book. I always wish books like these at least had the temerity to include much more in the way of the mathematical underpinnings of their subjects; I’m glad that the popular press (or at least The Economist in this case) is willing to be asking for the mathematics as well. Hopefully it will mark a broader trend in popular books on scientific topics!

Fundamental physics

Big bang

Popular physics has enjoyed a new-found regard. Now comes a brave attempt to inject mathematics into an otherwise fashionable subject

Nov 5th 2011 | from the print edition

The Quantum Universe: Everything That Can Happen Does Happen. By Brian Cox and Jeff Forshaw. Allen Lane; 255 pages; £20. To be published in America in January by Da Capo Press; $25.

PREVIOUSLY the preserve of dusty, tweed-jacketed academics, physics has enjoyed a surprising popular renaissance over the past few years. In America Michio Kaku, a string theorist, has penned several successful books and wowed television and radio audiences with his presentations on esoteric subjects such as the existence of wormholes and the possibility of alien life. In Britain Brian Cox, a former pop star whose music helped propel Tony Blair to power, has become the front man for physics, which recently regained its status as a popular subject in British classrooms, an effect many attribute to Mr Cox’s astonishing appeal.

Mr Cox, a particle physicist, is well-known as the presenter of two BBC television series that have attracted millions of viewers (a third series will be aired next year) and as a bestselling author and public speaker. His latest book, “The Quantum Universe”, which he co-wrote with Jeff Forshaw of the University of Manchester, breaks the rules of popular science-writing that were established over two decades ago by Stephen Hawking, who launched the modern genre with his famous book, “A Brief History of Time”.

Mr Hawking’s literary success was ascribed to his eschewing equations. One of his editors warned him that sales of the book would be halved by every equation he included; Mr Hawking inserted just one, E=mc2, and, even then, the volume acquired a sorry reputation for being bought but not read. By contrast, Mr Cox, whose previous book with Mr Forshaw investigated “Why does E=mc2?” (2009), has bravely sloshed a generous slug of mathematics throughout his texts.

The difficulties in explaining physics without using maths are longstanding. Einstein mused, “The eternal mystery of the world is its comprehensibility,” and “the fact that it is comprehensible is a miracle.” Yet the language in which the world is described is that of maths, a relatively sound grasp of which is needed to comprehend the difficulties that physicists are trying to resolve as well as the possible solutions. Mr Cox has secured a large fan base with his boyish good looks, his happy turns of phrase and his knack for presenting complex ideas using simple analogies. He also admirably shies away from dumbing down. “The Quantum Universe” is not a dry undergraduate text book, but nor is it a particularly easy read.

The subject matter is hard. Quantum mechanics, which describes in subatomic detail a shadowy world in which cats can be simultaneously alive and dead, is notoriously difficult to grasp. Its experiments yield bizarre results that can be explained only by embracing the maths that describe them, and its theories make outrageous predictions (such as the existence of antimatter) that have nevertheless later been verified. Messrs Cox and Forshaw say they have included the maths “mainly because it allows us to really explain why things are the way they are. Without it, we should have to resort to the physicist-guru mentality whereby we pluck profundities out of thin air, and neither author would be comfortable with guru status.”

That stance might comfort the authors, but to many readers they will nonetheless seem to pluck equations out of thin air. Yet their decision to include some of the hard stuff leaves open the possibility that some readers might actually engage in the slog that leads to higher pleasures. For non-sloggers alternative routes are offered: Messrs Cox and Forshaw use clockfaces to illustrate how particles interact with one another, a drawing of how guitar strings twang and a photograph of a vibrating drum. A diagram, rather than an equation, is used to explain one promising theory of how matter acquires mass, a question that experiments on the Large Hadron Collider at CERN, the European particle-physics laboratory near Geneva, will hopefully soon answer.

The authors have wisely chosen to leaven their tome with amusing tales of dysfunctional characters among scholars who developed quantum mechanics in the 1920s and beyond, as well as with accounts of the philosophical struggles with which they grappled and the occasional earthy aside. Where the subject matter is a trifle dull, Messrs Cox and Forshaw acknowledge it: of Heinrich Kayser, who a century ago completed a six-volume reference book documenting the spectral lines generated by every known element, they observe, “He must have been great fun at dinner parties.” And they make some sweeping generalisations about their colleagues who pore over equations, “Physicists are very lazy, and they would not go to all this trouble unless it saved time in the long run.”

Whether or not readers of “The Quantum Universe” will follow all the maths, the authors’ love for their subject shines through the book. “There is no better demonstration of the power of the scientific method than quantum theory,” they write. That may be so, but physicists all over the world, Messrs Cox and Forshaw included, are longing for the next breakthrough that will supersede the claim. Hopes are pinned on experiments currently under way at CERN that may force physicists to rethink their understanding of the universe, and inspire Messrs Cox and Forshaw to write their next book—equations and all.

from the print edition | Books and arts

Entropy Is Universal Rule of Language | Wired Science

Entropy Is Universal Rule of Language by Lisa Grossman (Wired)
The amount of information carried in the arrangement of words is the same across all languages, even languages that aren't related to each other. This consistency could hint at a single common ancestral language, or universal features of how human brains process speech. "It doesn't matter what language or style you take," said systems biologist…

The research this article is based on is quite interesting for those doing language research.

The amount of information carried in the arrangement of words is the same across all languages, even languages that aren’t related to each other. This consistency could hint at a single common ancestral language, or universal features of how human brains process speech.

“It doesn’t matter what language or style you take,” said systems biologist Marcelo Montemurro of England’s University of Manchester, lead author of a study May 13 in PLoS ONE. “In languages as diverse as Chinese, English and Sumerian, a measure of the linguistic order, in the way words are arranged, is something that seems to be a universal of languages.”

Language carries meaning both in the words we choose, and the order we put them in. Some languages, like Finnish, carry most of their meaning in tags on the words themselves, and are fairly free-form in how words are arranged. Others, like English, are more strict “John loves Mary” means something different from “Mary loves John.”

Montemurro realized that he could quantify the amount of information encoded in word order by computing a text’s “entropy,” or a measure of how evenly distributed the words are. Drawing on methods from information theory, Montemurro co-author Dami??n Zanette of the National Atomic Energy Commission in Argentina calculated the entropy of thousands of texts in eight different languages: English, French, German, Finnish, Tagalog, Sumerian, Old Egyptian and Chinese.

Then the researchers randomly rearranged all the words in the texts, which ranged from the complete works of Shakespeare to The Origin of Species to prayers written on Sumerian tablets.

“If we destroy the original text by scrambling all the words, we are preserving the vocabulary,” Montemurro said. “What we are destroying is the linguistic order, the patterns that we use to encode information.”

The researchers found that the original texts spanned a variety of entropy values in different languages, reflecting differences in grammar and structure.

But strangely, the difference in entropy between the original, ordered text and the randomly scrambled text was constant across languages. This difference is a way to measure the amount of information encoded in word order, Montemurro says. The amount of information lost when they scrambled the text was about 3.5 bits per word.

“We found, very interestingly, that for all languages we got almost exactly the same value,” he said. “For some reason these languages evolved to be constrained in this framework, in these patterns of word ordering.”

This consistency could reflect some cognitive constraints that all human brains run up against, or give insight into the evolution of language, Montemurro suggests.

Cognitive scientists are still debating whether languages have universal features. Some pioneering linguists suggested that languages should evolve according to a limited set of rules, which would produce similar features of grammar and structure. But a study published last month that looked at the structure and syntax of thousands of languages found no such rules.

It may be that universal properties of language show up only at a higher level of organization, suggests linguist Kenny Smith of the University of Edinburgh.

“Maybe these broad-brushed features get down to what’s really essential” about language, he said. “Having words, and having rules for how the words are ordered, maybe those are the things that help you do the really basic functions of language. And the places where linguists traditionally look to see universals are not where the fundamentals of language are.”

Image: James Morrison/Flickr.

Citation:”Universal Entropy of Word Ordering Across Linguistic Families.” Marcelo A. Montemurro and Damián H. Zanette. PLoS ONE, Vol. 6, Issue 5, May 13, 2011. DOI: 10.1371/journal.pone.0019875.

via Wired.com

 

Syndicated copies to:

Barnes & Noble Board Would Face Tough Choices in a Buyout Vote | Dealbook

Barnes & Noble Faces Tough Choices in a Buyout Vote by Steven Davidoff Solomon (DealBook)
If Leonard Riggio, Barnes & Noble's chairman, joins Liberty Media's proposed buyout of his company, the board needs to decide how to handle his 30 percent stake before shareholders vote on the deal.
Media_httpgraphics8ny_rfodt

 
This story from the New York Times’ Dealbook is a good quick read on some of the details and machinations of the Barnes & Noble buyout. Perhaps additional analysis on it from a game theoretical viewpoint would yield new insight?

Syndicated copies to:

Synthetic Biology’s Hunt for the Genetic Transistor | IEEE Spectrum

Synthetic Biology's Hunt for the Genetic Transistor (spectrum.ieee.org)
How genetic circuits will unlock the true potential of bioengineering

This is a great short article on bioengineering and synthetic biology written for the layperson. It’s also one of the best crash courses I’ve read on genetics in a while.

Media_httpspectrumiee_kzdjg