🔖 The hidden simplicity of biology by Paul C W Davies and Sara Imari Walker | Reports on Progress in Physics

Bookmarked The hidden simplicity of biology (Reports on Progress in Physics)
Life is so remarkable, and so unlike any other physical system, that it is tempting to attribute special factors to it. Physics is founded on the assumption that universal laws and principles underlie all natural phenomena, but is it far from clear that there are 'laws of life' with serious descriptive or predictive power analogous to the laws of physics. Nor is there (yet) a 'theoretical biology' in the same sense as theoretical physics. Part of the obstacle in developing a universal theory of biological organization concerns the daunting complexity of living organisms. However, many attempts have been made to glimpse simplicity lurking within this complexity, and to capture this simplicity mathematically. In this paper we review a promising new line of inquiry to bring coherence and order to the realm of biology by focusing on 'information' as a unifying concept.

Downloadable free copy available on ResearchGate.

Syndicated copies to:

🔖 The “Hard Problem” of Life by Sara Imari Walker & Paul C.W. Davies

Bookmarked The "Hard Problem" of Life (arXiv)
Chalmer's famously identified pinpointing an explanation for our subjective experience as the "hard problem of consciousness". He argued that subjective experience constitutes a "hard problem" in the sense that its explanation will ultimately require new physical laws or principles. Here, we propose a corresponding "hard problem of life" as the problem of how `information' can affect the world. In this essay we motivate both why the problem of information as a causal agent is central to explaining life, and why it is hard - that is, why we suspect that a full resolution of the hard problem of life will, similar to as has been proposed for the hard problem of consciousness, ultimately not be reducible to known physical principles. Comments: To appear in "From Matter to Life: Information and Causality". S.I. Walker, P.C.W. Davies and G.F.R. Ellis (eds). Cambridge University Press
Syndicated copies to:

🔖 The Algorithmic Origins of Life – Sara Walker (SETI Talks)

Bookmarked The Algorithmic Origins of Life by Sara I. Walker (SETI Institute Talks)
The origin of life is arguably one of the greatest unanswered questions in science. A primary challenge is that without a proper definition for life -- a notoriously challenging problem in its own right -- the problem of how life began is not well posed. Here we propose that the transition from non-life to life may correspond to a fundamental shift in causal structure, where information gains direct, and context-dependent, causal efficacy over matter, a transition that may be mapped to a nontrivial distinction in how living systems process information. Dr. Walker will discuss potential measures of such a transition, which may be amenable to laboratory study, and how the proposed mechanism corresponds to the onset of the unique mode of (algorithmic) information processing characteristic of living systems.
Syndicated copies to:

🔖 Origins of Life: A Problem for Physics

Bookmarked Origins of Life: A Problem for Physics by Sara I. Walker (arXiv)
The origins of life stands among the great open scientific questions of our time. While a number of proposals exist for possible starting points in the pathway from non-living to living matter, these have so far not achieved states of complexity that are anywhere near that of even the simplest living systems. A key challenge is identifying the properties of living matter that might distinguish living and non-living physical systems such that we might build new life in the lab. This review is geared towards covering major viewpoints on the origin of life for those new to the origin of life field, with a forward look towards considering what it might take for a physical theory that universally explains the phenomenon of life to arise from the seemingly disconnected array of ideas proposed thus far. The hope is that a theory akin to our other theories in fundamental physics might one day emerge to explain the phenomenon of life, and in turn finally permit solving its origins.
Syndicated copies to:

Introducing AltPlatform & our manifesto for the Open Web | AltPlatform

Bookmarked Introducing AltPlatform & our manifesto for the Open Web by Richard MacManus (AltPlatform.org)
Welcome everyone to AltPlatform, a non-profit tech blog devoted to Open Web technologies. What do we mean by “Open Web”? Firstly, we want to experiment with open source (like this WordPress.org blog) and open standards (like RSS). We’re also using the word open to signify a wider, boundary-less view of the Web. In other words, we want to look for opportunities beyond the Walled Gardens – proprietary platforms like Facebook and Twitter where you don’t own your own data, you have little control over your news feeds, and you have to live by certain rules.

This looks like a must-read blog for Indieweb proponents.​​

Syndicated copies to:

🔖 Statistical Mechanics, Spring 2016 (Caltech, Physics 12c with videos) by John Preskill

Bookmarked Statistical Mechanics, Spring 2016 (Physics 12c) by John Preskill (Caltech)
An introductory course in statistical mechanics.

Recommended textbook Thermal Physics by Charles Kittel and Herbert Kroemer

There’s also a corresponding video lecture series available on YouTube

Syndicated copies to:

🔖 Proceedings of the Artificial Life Conference 2016

Bookmarked Proceedings of the Artificial Life Conference 2016 (The MIT Press)
The ALife conferences are the major meeting of the artificial life research community since 1987. For its 15th edition in 2016, it was held in Latin America for the first time, in the Mayan Riviera, Mexico, from July 4 -8. The special them of the conference: How can the synthetic study of living systems contribute to societies: scientifically, technically, and culturally? The goal of the conference theme is to better understand societies with the purpose of using this understanding for a more efficient management and development of social systems.

Free download available.

Proceedings of the Artificial Life Conference 2016

Syndicated copies to:

🔖 Increasing homogeneity in global food supplies and the implications for food security

Bookmarked Increasing homogeneity in global food supplies and the implications for food security (Proceedings of the National Academy of Sciences )
The narrowing of diversity in crop species contributing to the world’s food supplies has been considered a potential threat to food security. However, changes in this diversity have not been quantified globally. We assess trends over the past 50 y in the richness, abundance, and composition of crop species in national food supplies worldwide. Over this period, national per capita food supplies expanded in total quantities of food calories, protein, fat, and weight, with increased proportions of those quantities sourcing from energy-dense foods. At the same time the number of measured crop commodities contributing to national food supplies increased, the relative contribution of these commodities within these supplies became more even, and the dominance of the most significant commodities decreased. As a consequence, national food supplies worldwide became more similar in composition, correlated particularly with an increased supply of a number of globally important cereal and oil crops, and a decline of other cereal, oil, and starchy root species. The increase in homogeneity worldwide portends the establishment of a global standard food supply, which is relatively species-rich in regard to measured crops at the national level, but species-poor globally. These changes in food supplies heighten interdependence among countries in regard to availability and access to these food sources and the genetic resources supporting their production, and give further urgency to nutrition development priorities aimed at bolstering food security.

h/t Eat This Podcast

Syndicated copies to:

🔖 Complex Networks & Their Applications V

Bookmarked Complex Networks & Their Applications V: Proceedings of the 5th International Workshop on Complex Networks and their Applications (Springer)
This book highlights cutting-edge research in the field of network science, offering scientists, researchers and graduate students a unique opportunity to catch up on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the fifth International Workshop on Complex Networks & their Applications (COMPLEX NETWORKS 2016), which took place in Milan during the last week of November 2016. The carefully selected papers are divided into 11 sections reflecting the diversity and richness of research areas in the field. More specifically, the following topics are covered: Network models; Network measures; Community structure; Network dynamics; Diffusion, epidemics and spreading processes; Resilience and control; Network visualization; Social and political networks; Networks in finance and economics; Biological and ecological networks; and Network analysis. DOI: 10.1007/978-3-319-50901-3; Part of the Studies in Computational Intelligence book series (SCI, volume 693)

Book cover of Complex Networks and Their Applications V

Syndicated copies to:

🔖 From Matter to Life: Information and Causality by Sara Imari Walker, Paul C. W. Davies, George F. R. Ellis

Bookmarked From Matter to Life: Information and Causality by (Cambridge University Press)
Recent advances suggest that the concept of information might hold the key to unravelling the mystery of life's nature and origin. Fresh insights from a broad and authoritative range of articulate and respected experts focus on the transition from matter to life, and hence reconcile the deep conceptual schism between the way we describe physical and biological systems. A unique cross-disciplinary perspective, drawing on expertise from philosophy, biology, chemistry, physics, and cognitive and social sciences, provides a new way to look at the deepest questions of our existence. This book addresses the role of information in life, and how it can make a difference to what we know about the world. Students, researchers, and all those interested in what life is and how it began will gain insights into the nature of life and its origins that touch on nearly every domain of science. Hardcover: 514 pages; ISBN-10: 1107150531; ISBN-13: 978-1107150539;
From Matter to Life: Information and Causality
Syndicated copies to:

🔖 An Introduction to Transfer Entropy: Information Flow in Complex Systems

Bookmarked An Introduction to Transfer Entropy: Information Flow in Complex Systems (Springer; 1st ed. 2016 edition)
This book considers a relatively new metric in complex systems, transfer entropy, derived from a series of measurements, usually a time series. After a qualitative introduction and a chapter that explains the key ideas from statistics required to understand the text, the authors then present information theory and transfer entropy in depth. A key feature of the approach is the authors' work to show the relationship between information flow and complexity. The later chapters demonstrate information transfer in canonical systems, and applications, for example in neuroscience and in finance. The book will be of value to advanced undergraduate and graduate students and researchers in the areas of computer science, neuroscience, physics, and engineering. ISBN: 978-3-319-43221-2 (Print), 978-3-319-43222-9 (Online)

Want to read; h/t to Joseph Lizier.
Continue reading “🔖 An Introduction to Transfer Entropy: Information Flow in Complex Systems”

Syndicated copies to:

Repost of John Carlos Baez’ Biology as Information Dynamics

Bookmarked Biology as Information Dynamics by John Carlos Baez (Google+)
I'm giving a talk at the Stanford Complexity Group this Thursday afternoon, April 20th. If you're around - like in Silicon Valley - please drop by! It will be in Clark S361 at 4 pm. Here's the idea. Everyone likes to say that biology is all about information. There's something true about this - just think about DNA. But what does this insight actually do for us? To figure it out, we need to do some work. Biology is also about things that can make copies of themselves. So it makes sense to figure out how information theory is connected to the 'replicator equation' — a simple model of population dynamics for self-replicating entities. To see the connection, we need to use relative information: the information of one probability distribution relative to another, also known as the Kullback–Leibler divergence. Then everything pops into sharp focus. It turns out that free energy — energy in forms that can actually be used, not just waste heat — is a special case of relative information Since the decrease of free energy is what drives chemical reactions, biochemistry is founded on relative information. But there's a lot more to it than this! Using relative information we can also see evolution as a learning process, fix the problems with Fisher's fundamental theorem of natural selection, and more. So this what I'll talk about! You can see slides of an old version here: http://math.ucr.edu/home/baez/bio_asu/ but my Stanford talk will be videotaped and it'll eventually be here: https://www.youtube.com/user/StanfordComplexity You can already see lots of cool talks at this location! #biology

Wondering if there’s a way I can manufacture a reason to head to Northern California this week…

Syndicated copies to:

🔖 Closing Communities: FFFFOUND! vs MLKSHK | Waxy.org

Bookmarked Closing Communities: FFFFOUND! vs MLKSHK by Andy Baio (Waxy.org)
Next month, two seminal image-sharing communities, FFFFOUND! and MLKSHK, will close their doors within a week of each other. There's a profound difference in how they're doing it as noted by someone who's previously sold off a community.

This is a great little piece comparing and contrasting how to relatively similar online communities and social silos are shutting down their services. One is going a much better route than the other and providing export tools and archive ability to preserve the years of work and effort.

For more about social media sites, communities, and online silos that have shut down before, see site-deaths on the Indieweb wiki.​​​

Syndicated copies to: