Bookmarked Information flow and optimization in transcriptional regulation by Gašper Tkačik, Curtis G. Callan Jr., and William Bialek (PNAS August 26, 2008 105 (34) 12265-12270)
In the simplest view of transcriptional regulation, the expression of a gene is turned on or off by changes in the concentration of a transcription factor (TF). We use recent data on noise levels in gene expression to show that it should be possible to transmit much more than just one regulatory bit. Realizing this optimal information capacity would require that the dynamic range of TF concentrations used by the cell, the input/output relation of the regulatory module, and the noise in gene expression satisfy certain matching relations, which we derive. These results provide parameter-free, quantitative predictions connecting independently measurable quantities. Although we have considered only the simplified problem of a single gene responding to a single TF, we find that these predictions are in surprisingly good agreement with recent experiments on the Bicoid/Hunchback system in the early Drosophila embryo and that this system achieves ∼90% of its theoretical maximum information transmission.
https://doi.org/10.1073/pnas.0806077105

Published by

Chris Aldrich

I'm a biomedical and electrical engineer with interests in information theory, complexity, evolution, genetics, signal processing, IndieWeb, theoretical mathematics, and big history. I'm also a talent manager-producer-publisher in the entertainment industry with expertise in representation, distribution, finance, production, content delivery, and new media.

Leave a Reply

Your email address will not be published. Required fields are marked *