🔖 Theory Of Self Reproducing Automata by John Von Neumann, Arthur W. Burks (Editor) | 9780252727337

Bookmarked Theory Of Self Reproducing Automata by John von Neumann (University of Illinois Press)

Waiting for the price of some of these to drop.

Digital copy available on Archive.org.

Syndicated copies to:

👓 Disconnected, fragmented, or united? a trans-disciplinary review of network science | Applied Network Science | César A. Hidalgo

Read Disconnected, fragmented, or united? a trans-disciplinary review of network science by César A. HidalgoCésar A. Hidalgo (Applied Network Science | SpringerLink)
During decades the study of networks has been divided between the efforts of social scientists and natural scientists, two groups of scholars who often do not see eye to eye. In this review I present an effort to mutually translate the work conducted by scholars from both of these academic fronts hoping to continue to unify what has become a diverging body of literature. I argue that social and natural scientists fail to see eye to eye because they have diverging academic goals. Social scientists focus on explaining how context specific social and economic mechanisms drive the structure of networks and on how networks shape social and economic outcomes. By contrast, natural scientists focus primarily on modeling network characteristics that are independent of context, since their focus is to identify universal characteristics of systems instead of context specific mechanisms. In the following pages I discuss the differences between both of these literatures by summarizing the parallel theories advanced to explain link formation and the applications used by scholars in each field to justify their approach to network science. I conclude by providing an outlook on how these literatures can be further unified.

Highlights, Quotes, Annotations, & Marginalia

Social scientists focus on explaining how context specific social and economic mechanisms drive the structure of networks and on how networks shape social and economic outcomes. By contrast, natural scientists focus primarily on modeling network characteristics that are independent of context, since their focus is to identify universal characteristics of systems instead of context specific mechanisms.  

August 25, 2018 at 10:18PM

Science and Complexity (Weaver 1948); explained the three eras that according to him defined the history of science. These were the era of simplicity, disorganized complexity, and organized complexity. In the eyes of Weaver what separated these three eras was the development of mathematical tools allowing scholars to describe systems of increasing complexity.  

August 25, 2018 at 10:19PM

Problems of disorganized complexity are problems that can be described using averages and distributions, and that do not depend on the identity of the elements involved in a system, or their precise patterns of interactions. A classic example of a problem of disorganized complexity is the statistical mechanics of Ludwig Boltzmann, James-Clerk Maxwell, and Willard Gibbs, which focuses on the properties of gases.  

August 25, 2018 at 10:20PM

Soon after Weaver’s paper, biologists like Francois Jacob (Jacob and Monod 1961), (Jacob et al. 1963) and Stuart Kaufmann (Kauffman 1969), developed the idea of regulatory networks. Mathematicians like Paul Erdos and Alfred Renyi, advanced graph theory (Erdős and Rényi 1960) while Benoit Mandelbrot worked on Fractals (Mandelbrot and Van Ness 1968), (Mandelbrot 1982). Economists like Thomas Schelling (Schelling 1960) and Wasily Leontief (Leontief 1936), (Leontief 1936), respectively explored self-organization and input-output networks. Sociologists, like Harrison White (Lorrain and White 1971) and Mark Granovetter (Granovetter 1985), explored social networks, while psychologists like Stanley Milgram (Travers and Milgram 1969) explored the now famous small world problem.   

Some excellent references
August 25, 2018 at 10:24PM

First, I will focus in these larger groups because reviews that transcend the boundary between the social and natural sciences are rare, but I believe them to be valuable. One such review is Borgatti et al. (2009), which compares the network science of natural and social sciences arriving at a similar conclusion to the one I arrived.  

August 25, 2018 at 10:27PM

Links are the essence of networks. So I will start this review by comparing the mechanisms used by natural and social scientists to explain link formation.  

August 25, 2018 at 10:32PM

When connecting the people that acted in the same movie, natural scientists do not differentiate between people in leading or supporting roles.  

But they should because it’s not often the case that these are relevant unless they are represented by the same agent or agency.
August 25, 2018 at 10:51PM

For instance, in the study of mobile phone networks, the frequency and length of interactions has often been used as measures of link weight (Onnela et al. 2007), (Hidalgo and Rodriguez-Sickert 1008), (Miritello et al. 2011).  

And they probably shouldn’t because typically different levels of people are making these decisions. Studio brass and producers typically have more to say about the lead roles and don’t care as much about the smaller ones which are overseen by casting directors or sometimes the producers. The only person who has oversight of all of them is the director, and even then they may quit caring at some point.
August 25, 2018 at 10:52PM

Social scientists explain link formation through two families of mechanisms; one that finds it roots in sociology and the other one in economics. The sociological approach assumes that link formation is connected to the characteristics of individuals and their context. Chief examples of the sociological approach include what I will call the big three sociological link-formation hypotheses. These are: shared social foci, triadic closure, and homophily.  

August 25, 2018 at 10:55PM

The social foci hypothesis predicts that links are more likely to form among individuals who, for example, are classmates, co-workers, or go to the same gym (they share a social foci). The triadic closure hypothesis predicts that links are more likely to form among individuals that share “friends” or acquaintances. Finally, the homophily hypothesis predicts that links are more likely to form among individuals who share social characteristics, such as tastes, cultural background, or physical appearance (Lazarsfeld and Merton 1954), (McPherson et al. 2001).  

definitions of social foci, triadic closure, and homophily within network science.
August 26, 2018 at 11:39AM

Yet, strategic games look for equilibrium in the formation and dissolution of ties in the context of the game theory advanced first by (Von Neumann et al. 2007), and later by (Nash 1950).  

August 25, 2018 at 10:58PM

Preferential attachment is the idea that connectivity begets connectivity.  

August 25, 2018 at 10:59PM

Preferential attachment is an idea advanced originally by the statisticians John Willis and Udny Yule in (Willis and Yule 1922), but has been rediscovered numerous times during the twentieth century.  

August 25, 2018 at 11:00PM

Rediscoveries of this idea in the twentieth century include the work of (Simon 1955) (who did cite Yule), (Merton 1968), (Price 1976) (who studied citation networks), and (Barabási and Albert 1999), who published the modern reference for this model, which is now widely known as the Barabasi-Albert model.  

August 25, 2018 at 11:01PM

preferential attachment. In the eyes of the social sciences, however, understanding which of all of these hypotheses drives the formation of the network is what one needs to explore.  

For example what drives attachment of political candidates?
August 26, 2018 at 08:15AM

Finally it is worth noting that trust, through the theory of social capital, has been connected with long-term economic growth—even though these results are based on regressions using extremely sparse datasets.  

And this is an example of how Trump is hurting the economy.
August 26, 2018 at 08:33AM

Nevertheless, the evidence suggests that social capital and social institutions are significant predictors of economic growth, after controlling for the effects of human capital and initial levels of income (Knack and Keefer 1997), (Knack 2002).4 So trust is a relevant dimension of social interactions that has been connected to individual dyads, network formation, labor markets, and even economic growth.  

August 26, 2018 at 08:35AM

Social scientist, on the other hand, have focused on what ties are more likely to bring in new information, which are primarily weak ties (Granovetter 1973), and on why weak ties bring new information (because they bridge structural holes (Burt 2001), (Burt 2005)).  

August 26, 2018 at 09:45AM

heterogeneous networks have been found to be effective promoters of the evolution of cooperation, since there are advantages to being a cooperator when you are a hub, and hubs tend to stabilize networks in equilibriums where levels of cooperation are high (Ohtsuki et al. 2006), (Pacheco et al. 2006), (Lieberman et al. 2005), (Santos and Pacheco 2005).  

August 26, 2018 at 09:49AM

These results, however, have also been challenged by human experiments finding no such effect (Gracia-Lázaro et al. 2012). The study of cooperation in networks has also been performed in dynamic settings, where individuals are allowed to cut ties (Wang et al. 2012), promoting cooperation, and are faced with different levels of knowledge about the reputation of peers in their network (Gallo and Yan 2015). Moreover, cooperating behavior has seen to spread when people change the networks where they participate in (Fowler and Christakis 2010).  

Open questions
August 26, 2018 at 09:50AM

References

1.
Hidalgo CA. Disconnected, fragmented, or united? a trans-disciplinary review of network science. ANS. 2016;1(1). doi:10.1007/s41109-016-0010-3
Syndicated copies to:

👓 The harm of harmless jokes | lu popolvuh – Medium

Read The harm of harmless jokes by lu popolvuh (lu popolvuh – Medium)
A #MeTooSTEM story about requesting a change in tradition

I’ve followed bits of this story for a while since it touches on an area I follow, but I had no idea the harassment was so terrible. The Romeo and Juliette business is just deplorable.

Syndicated copies to:

👓 A Songwriting Mystery Solved: Math Proves John Lennon Wrote ‘In My Life’ | NPR

Read A Songwriting Mystery Solved: Math Proves John Lennon Wrote 'In My Life' (NPR | Weekend Edition Saturday)

Over the years, Lennon and McCartney have revealed who really wrote what, but some songs are still up for debate. The two even debate between themselves — their memories seem to differ when it comes to who wrote the music for 1965's "In My Life."

Mathematics professor Jason Brown spent 10 years working with statistics to solve the magical mystery. Brown's the findings were presented on Aug. 1 at the Joint Statistical Meeting in a presentation called "Assessing Authorship of Beatles Songs from Musical Content: Bayesian Classification Modeling from Bags-Of-Words Representations."

Syndicated copies to:

🔖 Proceedings for ALIFE 2018: The 2018 Conference on Artificial Life

Bookmarked Proceedings ALIFE 2018: The 2018 Conference on Artificial Life by Takashi Ikegami, Nathaniel Virgo, Olaf Witkowski, Mizuki Oka, Reiji Suzuki, Hiroyuki Iizuka (eds.) (MIT Press Journals)
This volume presents the proceedings of ALIFE 2018, the 2018 Conference on Artificial Life, held July 23rd-27th. It took place in Tokyo, Japan (http://2018.alife.org). The ALIFE and ECAL conferences have been the major meeting of the artificial life (ALife) research community since 1987 and 1991, respectively. As a Hybrid of the European Conference on Artificial Life (ECAL) and the International Conference on the Synthesis and Simulation of Living Systems (ALIFE), the 2018 Conference on Artificial Life (ALIFE 2018) will take place outside both Europe and the US, in Tokyo, Japan.
Syndicated copies to:

🔖 CNS*2018 Workshop on Methods of Information Theory in Computational Neuroscience

Read Information Theory in Computational Neuroscience Workshop (CNS*2018) by Joseph Lizier (lizier.me)
Methods originally developed in Information Theory have found wide applicability in computational neuroscience. Beyond these original methods there is a need to develop novel tools and approaches that are driven by problems arising in neuroscience. A number of researchers in computational/systems neuroscience and in information/communication theory are investigating problems of information representation and processing. While the goals are often the same, these researchers bring different perspectives and points of view to a common set of neuroscience problems. Often they participate in different fora and their interaction is limited. The goal of the workshop is to bring some of these researchers together to discuss challenges posed by neuroscience and to exchange ideas and present their latest work. The workshop is targeted towards computational and systems neuroscientists with interest in methods of information theory as well as information/communication theorists with interest in neuroscience.
Syndicated copies to:

Following Mark Stanley Everitt

Followed Mark Stanley Everitt (Qubyte Codes)

Mark Stanley Everitt headshot Welcome to qubyte.codes! The personal site of Mark Stanley Everitt.

I'm a programmer specialising in JavaScript, living and working in Brighton, UK. This blog is a place for me to write about stuff I find interesting or useful. Probably JavaScript for the most part, but certainly not limited to it. By day I spend most of my programming time writing Node.js applications, with a little browser stuff when I can.

I'm also interested in the social side and ethics of software development. I'm a regular mentor at Codebar in Brighton.

I lived and worked in Tokyo for a number of years, initially as an academic (I hold a PhD in quantum optics and quantum information), and later as a programmer. I speak a little Japanese.

If you have and questions of comments, tweet to me @qubyte or toot to me at @qubyte@mastodon.social .

If you're interested in code I've published, I'm qubyte on GitHub.

A blogger/coder who was into quantum mechanics, information theory, supports webmentions, and speaks some Japanese? How could I not follow?!

Syndicated copies to:

👓 The role of information theory in chemistry | Chemistry World

Read The role of information theory in chemistry by Philip Ball (Chemistry World)
Is chemistry an information science after all?

Discussion of some potential interesting directions for application of information theory to chemistry (and biology).

In the 1990s, Nobel laureate Jean-Marie Lehn argued that the principles of spontaneous self-assembly and self-organisation, which he had helped to elucidate in supramolecular chemistry, could give rise to a science of ‘informed matter’ beyond the molecule.

Syndicated copies to:

👓 Andrew Jordan reviews Peter Woit’s Quantum Theory, Groups and Representations and finds much to admire. | Inference

Read Woit’s Way by Andrew Jordan (Inference: International Review of Science)
Andrew Jordan reviews Peter Woit's Quantum Theory, Groups and Representations and finds much to admire.

For the tourists, I’ve noted before that Peter maintains a free copy of his new textbook on his website.

I also don’t think I’ve ever come across the journal Inference before, but it looks quite nice in terms of content and editorial.

Syndicated copies to:

👓 Algorithmic Information Dynamics: A Computational Approach to Causality and Living Systems From Networks to Cells | Complexity Explorer | Santa Fe Institute

Read Algorithmic Information Dynamics: A Computational Approach to Causality and Living Systems From Networks to Cells (Complexity Explorer | Santa Fe Institute)

About the Course:

Probability and statistics have long helped scientists make sense of data about the natural world — to find meaningful signals in the noise. But classical statistics prove a little threadbare in today’s landscape of large datasets, which are driving new insights in disciplines ranging from biology to ecology to economics. It's as true in biology, with the advent of genome sequencing, as it is in astronomy, with telescope surveys charting the entire sky.

The data have changed. Maybe it's time our data analysis tools did, too.
During this three-month online course, starting June 11th, instructors Hector Zenil and Narsis Kiani will introduce students to concepts from the exciting new field of Algorithm Information Dynamics to search for solutions to fundamental questions about causality — that is, why a particular set of circumstances lead to a particular outcome.

Algorithmic Information Dynamics (or Algorithmic Dynamics in short) is a new type of discrete calculus based on computer programming to study causation by generating mechanistic models to help find first principles of physical phenomena building up the next generation of machine learning.

The course covers key aspects from graph theory and network science, information theory, dynamical systems and algorithmic complexity. It will venture into ongoing research in fundamental science and its applications to behavioral, evolutionary and molecular biology.

Prerequisites:
Students should have basic knowledge of college-level math or physics, though optional sessions will help students with more technical concepts. Basic computer programming skills are also desirable, though not required. The course does not require students to adopt any particular programming language for the Wolfram Language will be mostly used and the instructors will share a lot of code written in this language that student will be able to use, study and exploit for their own purposes.

Course Outline:

  • The course will begin with a conceptual overview of the field.
  • Then it will review foundational theories like basic concepts of statistics and probability, notions of computability and algorithmic complexity, and brief introductions to graph theory and dynamical systems.
  • Finally, the course explores new measures and tools related to reprogramming artificial and biological systems. It will showcase the tools and framework in applications to systems biology, genetic networks and cognition by way of behavioral sequences.
  • Students will be able apply the tools to their own data and problems. The instructors will explain  in detail how to do this, and  will provide all the tools and code to do so.

The course runs 11 June through 03 September 2018.

Tuition is $50 required to get to the course material during the course and a certificate at the end but is is free to watch and if no fee is paid materials will not be available until the course closes. Donations are highly encouraged and appreciated in support for SFI's ComplexityExplorer to continue offering  new courses.

In addition to all course materials tuition includes:

  • Six-month access to the Wolfram|One platform (potentially renewable by other six) worth 150 to 300 USD.
  • Free digital copy of the course textbook to be published by Cambridge University Press.
  • Several gifts will be given away to the top students finishing the course, check the FAQ page for more details.

Best final projects will be invited to expand their results and submit them to the journal Complex Systems, the first journal in the field founded by Stephen Wolfram in 1987.

About the Instructor(s):

Hector Zenil has a PhD in Computer Science from the University of Lille 1 and a PhD in Philosophy and Epistemology from the Pantheon-Sorbonne University of Paris. He co-leads the Algorithmic Dynamics Lab at the Science for Life Laboratory (SciLifeLab), Unit of Computational Medicine, Center for Molecular Medicine at the Karolinska Institute in Stockholm, Sweden. He is also the head of the Algorithmic Nature Group at LABoRES, the Paris-based lab that started the Online Algorithmic Complexity Calculator and the Human Randomness Perception and Generation Project. Previously, he was a Research Associate at the Behavioural and Evolutionary Theory Lab at the Department of Computer Science at the University of Sheffield in the UK before joining the Department of Computer Science, University of Oxford as a faculty member and senior researcher.

Narsis Kiani has a PhD in Mathematics and has been a postdoctoral researcher at Dresden University of Technology and at the University of Heidelberg in Germany. She has been a VINNOVA Marie Curie Fellow and Assistant Professor in Sweden. She co-leads the Algorithmic Dynamics Lab at the Science for Life Laboratory (SciLifeLab), Unit of Computational Medicine, Center for Molecular Medicine at the Karolinska Institute in Stockholm, Sweden. Narsis is also a member of the Algorithmic Nature Group, LABoRES.

Hector and Narsis are the leaders of the Algorithmic Dynamics Lab at the Unit of Computational Medicine at Karolinska Institute.

TA:
Alyssa Adams has a PhD in Physics from Arizona State University and studies what makes living systems different from non-living ones. She currently works at Veda Data Solutions as a data scientist and researcher in social complex systems that are represented by large datasets. She completed an internship at Microsoft Research, Cambridge, UK studying machine learning agents in Minecraft, which is an excellent arena for simple and advanced tasks related to living and social activity. Alyssa is also a member of the Algorithmic Nature Group, LABoRES.

The development of the course and material offered has been supported by: 

  • The Foundational Questions Institute (FQXi)
  • Wolfram Research
  • John Templeton Foundation
  • Santa Fe Institute
  • Swedish Research Council (Vetenskapsrådet)
  • Algorithmic Nature Group, LABoRES for the Natural and Digital Sciences
  • Living Systems Lab, King Abdullah University of Science and Technology.
  • Department of Computer Science, Oxford University
  • Cambridge University Press
  • London Mathematical Society
  • Springer Verlag
  • ItBit for the Natural and Computational Sciences and, of course,
  • the Algorithmic Dynamics lab, Unit of Computational Medicine, SciLifeLab, Center for Molecular Medicine, The Karolinska Institute

Class Introduction:Class IntroductionHow to use Complexity Explorer:How to use Complexity Explorer

Course dates: 11 Jun 2018 9pm PDT to 03 Sep 2018 10pm PDT


Syllabus

  1. A Computational Approach to Causality
  2. A Brief Introduction to Graph Theory and Biological Networks
  3. Elements of Information Theory and Computability
  4. Randomness and Algorithmic Complexity
  5. Dynamical Systems as Models of the World
  6. Practice, Technical Skills and Selected Topics
  7. Algorithmic Information Dynamics and Reprogrammability
  8. Applications to Behavioural, Evolutionary and Molecular Biology

FAQ

Another interesting course from the SFI. Looks like an interesting way to spend the summer.

Syndicated copies to:

👓 Hiding Information in Plain Text | Spectrum IEEE

Read Hiding Information in Plain Text (IEEE Spectrum: Technology, Engineering, and Science News)
Subtle changes to letter shapes can embed messages

An interesting piece to be sure, but I’ve thought of doing this sort of steganography in the past. In particular, I recall having conversations with Sol Golomb about similar techniques in the past. I’m sure there’s got to be prior art for similar things as well.

Syndicated copies to:

👓 Does Donald Trump write his own tweets? Sometimes | The Boston Globe

Read Does Donald Trump write his own tweets? Sometimes (The Boston Globe)
It’s not always Trump tapping out a tweet, even when it sounds like his voice.

I wonder how complicated/in-depth the applied information theory is behind the Twitter bot described here?

Syndicated copies to:

Following Michael Levin

Followed Michael Levin (ase.tufts.edu)

Investigating information storage and processing in biological systems

We work on novel ways to understand and control complex pattern formation. We use techniques of molecular genetics, biophysics, and computational modeling to address large-scale control of growth and form. We work in whole frogs and flatworms, and sometimes zebrafish and human tissues in culture. Our projects span regeneration, embryogenesis, cancer, and learning plasticity – all examples of how cellular networks process information. In all of these efforts, our goal is not only to understand the molecular mechanisms necessary for morphogenesis, but also to uncover and exploit the cooperative signaling dynamics that enable complex bodies to build and remodel themselves toward a correct structure. Our major goal is to understand how individual cell behaviors are orchestrated towards appropriate large-scale outcomes despite unpredictable environmental perturbations.

Syndicated copies to:

👓 How Many Genes Do Cells Need? Maybe Almost All of Them | Quanta Magazine

Read How Many Genes Do Cells Need? Maybe Almost All of Them (Quanta Magazine)
An ambitious study in yeast shows that the health of cells depends on the highly intertwined effects of many genes, few of which can be deleted together without consequence.

There could be some interesting data to play with here if available.

I also can’t help but wonder about applying some of Stuart Kauffman’s ideas to something like this. In particular, this sounds very reminiscent to his analogy of what happens when one strings thread randomly among a pile of buttons and the resulting complexity.

Syndicated copies to:

👓 Voting me, voting you: Eurovision | The Economist (Espresso)

Read Voting me, voting you: Eurovision (Economist Espresso)
​The competition, whose finals play out tonight, is as famed for its politics as its cheesy

I often read the Economist’s Espresso daily round up, but don’t explicitly post that I do. I’m making an exception in this case because I find the voting partnerships mentioned here quite interesting. Might be worth delving into some of the underlying voting statistics for potential application to other real life examples. I’m also enamored of the nice visualization they provide. I wonder what the overlap of this data is with other related world politics looks like?

Syndicated copies to: