Bookmarked Cellular Homeostasis, Epigenesis and Replication in Randomly Aggregated Macromolecular Systems by Stuart A. Kauffman (Journal of Cybernetics Volume 1, 1971 - Issue 1)
Pages 71-96 | Published online: 15 Apr 2008
https://doi.org/10.1080/01969727108545830
Proto-organisms probably were randomly aggregated nets of chemical reactions. The hypothesis that contemporary organisms are also randomly constructed molecular automata is examined by modeling the gene as a binary (on-off) device and studying the behavior of large, randomly constructed nets of these binary “genes.” The results suggest that, if each “gene” is directly affected by two or three other “genes,” then such random nets: behave with great order and stability; undergo behavior cycles whose length predicts cell replication time as a function of the number of genes per cell; possess different modes of behavior whose number per net predicts roughly the number of cell types in an organism as a function of its number of genes; and under the stimulus of noise are capable of differentiating directly from any mode of behavior to at most a few other modes of behavior. Cellular differentiation is modeled as a Markov chain among the modes of behavior of a genetic net. The possibility of a general theory of metabolic behavior is suggested. Analytic approaches to the behavior of switching nets are discussed in Appendix 1, and some implications of the results for the origin of self replicating macromolecular systems is discussed in Appendix 6.

Michael Marshall in He may have found the key to the origins of life. So why have so few heard of him? ()

Published by

Chris Aldrich

I'm a biomedical and electrical engineer with interests in information theory, complexity, evolution, genetics, signal processing, IndieWeb, theoretical mathematics, and big history. I'm also a talent manager-producer-publisher in the entertainment industry with expertise in representation, distribution, finance, production, content delivery, and new media.

Leave a Reply

Your email address will not be published.