📖 Read pages 54-60 of 251 of The Demon in the Machine by Paul Davies

📖 Read pages 54-60 of 251 of The Demon in the Machine: How Hidden Webs of Information Are Finally Solving the Mystery of Life by Paul Davies

I’ve seen a few places in the text where he references “group(s) of Japanese scientists” in a collective way where as when the scientists are from the West he tends to name at least a principle investigator if not multiple members of a team. Is this implicit bias? I hope it’s not, but it feels very conspicuous and regular to me and I wish it weren’t there.

Photo of the book The Demon in the Machine by Paul Davies sitting on a wooden table. The cover is primarily the title in a large font superimposed on a wireframe of a bird in which the wireframe is meant to look like nodes in a newtowrk

Acquired The Demon in the Machine: How Hidden Webs of Information Are Finally Solving the Mystery of Life by Paul Davies

Acquired The Demon in the Machine: How Hidden Webs of Information Are Finally Solving the Mystery of Life by Paul DaviesPaul Davies (Allen Lane)

How does life create order from chaos? And just what is life, anyway? Leading physicist Paul Davies argues that to find the answers, we must first answer a deeper question: 'What is information?' To understand the origins and nature of life, Davies proposes a radical vision of biology which sees the underpinnings of life as similar to circuits and electronics, arguing that life as we know it should really be considered a phenomenon of information storage. In an extraordinary deep dive into the real mechanics of what we take for granted, Davies reveals how biological processes, from photosynthesis to birds' navigation abilities, rely on quantum mechanics, and explores whether quantum physics could prove to be the secret key of all life on Earth. Lively and accessible, Demons in the Machine boils down intricate interdisciplinary developments to take readers on an eye-opening journey towards the ultimate goal of science: unifying all theories of the living and the non-living, so that humanity can at last understand its place in the universe.

book cover The Demon in the Machine

Ordered from Amazon on February 4th and had it shipped from the UK because I wasn’t sure when the book was going to finally be released in the US.

🔖 The Demon in the Machine by Paul Davies | Allen Lane (2018)

Bookmarked The Demon in the Machine by Paul Davies (Allen Lane)

How does life create order from chaos? And just what is life, anyway? Leading physicist Paul Davies argues that to find the answers, we must first answer a deeper question: 'What is information?' To understand the origins and nature of life, Davies proposes a radical vision of biology which sees the underpinnings of life as similar to circuits and electronics, arguing that life as we know it should really be considered a phenomenon of information storage. In an extraordinary deep dive into the real mechanics of what we take for granted, Davies reveals how biological processes, from photosynthesis to birds' navigation abilities, rely on quantum mechanics, and explores whether quantum physics could prove to be the secret key of all life on Earth. Lively and accessible, Demons in the Machine boils down intricate interdisciplinary developments to take readers on an eye-opening journey towards the ultimate goal of science: unifying all theories of the living and the non-living, so that humanity can at last understand its place in the universe.

book cover of The Demon in the Machine by Paul Davies

Found via review.

👓 ‘I predict a great revolution’: inside the struggle to define life | the Guardian

Read 'I predict a great revolution': inside the struggle to define life by Ian Sample (the Guardian)
Paul Davies thinks combining physics and biology will reveal a pattern of information management

hat tip: Philip Ball

👓 Living Bits: Information and the Origin of Life | PBS

Highlights, Quotes, & Marginalia

our existence can succinctly be described as “information that can replicate itself,” the immediate follow-up question is, “Where did this information come from?”

from an information perspective, only the first step in life is difficult. The rest is just a matter of time.

Through decades of work by legions of scientists, we now know that the process of Darwinian evolution tends to lead to an increase in the information coded in genes. That this must happen on average is not difficult to see. Imagine I start out with a genome encoding n bits of information. In an evolutionary process, mutations occur on the many representatives of this information in a population. The mutations can change the amount of information, or they can leave the information unchanged. If the information changes, it can increase or decrease. But very different fates befall those two different changes. The mutation that caused a decrease in information will generally lead to lower fitness, as the information stored in our genes is used to build the organism and survive. If you know less than your competitors about how to do this, you are unlikely to thrive as well as they do. If, on the other hand, you mutate towards more information—meaning better prediction—you are likely to use that information to have an edge in survival.

There are some plants with huge amounts of DNA compared to their “peers”–perhaps these would be interesting test cases for potential experimentation of this?

🔖 Self-Organized Resonance during Search of a Diverse Chemical Space

Bookmarked Self-Organized Resonance during Search of a Diverse Chemical Space (Physical Review Letters)
ABSTRACT Recent studies of active matter have stimulated interest in the driven self-assembly of complex structures. Phenomenological modeling of particular examples has yielded insight, but general thermodynamic principles unifying the rich diversity of behaviors observed have been elusive. Here, we study the stochastic search of a toy chemical space by a collection of reacting Brownian particles subject to periodic forcing. We observe the emergence of an adaptive resonance in the system matched to the drive frequency, and show that the increased work absorption by these resonant structures is key to their stabilization. Our findings are consistent with a recently proposed thermodynamic mechanism for far-from-equilibrium self-organization.

Suggested by First Support for a Physics Theory of Life in Quanta Magazine.

🔖 Spontaneous fine-tuning to environment in many-species chemical reaction networks | PNAS

Bookmarked Spontaneous fine-tuning to environment in many-species chemical reaction networks (Proceedings of the National Academy of Sciences)
Significance A qualitatively more diverse range of possible behaviors emerge in many-particle systems once external drives are allowed to push the system far from equilibrium; nonetheless, general thermodynamic principles governing nonequilibrium pattern formation and self-assembly have remained elusive, despite intense interest from researchers across disciplines. Here, we use the example of a randomly wired driven chemical reaction network to identify a key thermodynamic feature of a complex, driven system that characterizes the “specialness” of its dynamical attractor behavior. We show that the network’s fixed points are biased toward the extremization of external forcing, causing them to become kinetically stabilized in rare corners of chemical space that are either atypically weakly or strongly coupled to external environmental drives. Abstract A chemical mixture that continually absorbs work from its environment may exhibit steady-state chemical concentrations that deviate from their equilibrium values. Such behavior is particularly interesting in a scenario where the environmental work sources are relatively difficult to access, so that only the proper orchestration of many distinct catalytic actors can power the dissipative flux required to maintain a stable, far-from-equilibrium steady state. In this article, we study the dynamics of an in silico chemical network with random connectivity in an environment that makes strong thermodynamic forcing available only to rare combinations of chemical concentrations. We find that the long-time dynamics of such systems are biased toward states that exhibit a fine-tuned extremization of environmental forcing.

Suggested by First Support for a Physics Theory of Life in Quanta Magazine.

👓 First Support for a Physics Theory of Life | Quanta Magazine

Read First Support for a Physics Theory of Life by Natalie Wolchover (Quanta Magazine)
Take chemistry, add energy, get life. The first tests of Jeremy England’s provocative origin-of-life hypothesis are in, and they appear to show how order can arise from nothing.

Interesting article with some great references I’ll need to delve into and read.


The situation changed in the late 1990s, when the physicists Gavin Crooks and Chris Jarzynski derived “fluctuation theorems” that can be used to quantify how much more often certain physical processes happen than reverse processes. These theorems allow researchers to study how systems evolve — even far from equilibrium.

I want to take a look at these papers as well as several about which the article is directly about.


Any claims that it has to do with biology or the origins of life, he added, are “pure and shameless speculations.”

Some truly harsh words from his former supervisor? Wow!


maybe there’s more that you can get for free

Most of what’s here in this article (and likely in the underlying papers) sounds to me to have been heavily influenced by the writings of W. Loewenstein and S. Kauffman. They’ve laid out some models/ideas that need more rigorous testing and work, and this seems like a reasonable start to the process. The “get for free” phrase itself is very S. Kauffman in my mind. I’m curious how many times it appears in his work?

📺 A Universal Theory of Life: Math, Art & Information by Sara Walker

Watched A Universal Theory of Life: Math, Art & Information from TEDxASU
Dr. Walker introduces the concept of information, then proposes that information may be a necessity for biological complexity in this thought-provoking talk on the origins of life. Sara is a theoretical physicist and astrobiologist, researching the origins and nature of life. She is particularly interested in addressing the question of whether or not “other laws of physics” might govern life, as first posed by Erwin Schrodinger in his famous book What is life?. She is currently an Assistant Professor in the School of Earth and Space Exploration and Beyond Center for Fundamental Concepts in Science at Arizona State University. She is also Fellow of the ASU -Santa Fe Institute Center for Biosocial Complex Systems, Founder of the astrobiology-themed social website SAGANet.org, and is a member of the Board of Directors of Blue Marble Space. She is active in public engagement in science, with recent appearances on “Through the Wormhole” and NPR’s Science Friday.

Admittedly, she only had a few short minutes, but it would have been nice if she’d started out with a precise definition of information. I suspect the majority of her audience didn’t know the definition with which she’s working and it would have helped focus the talk.

Her description of Speigelman’s Monster was relatively interesting and not very often seen in much of the literature that covers these areas.

I wouldn’t rate this very highly as a TED Talk as it wasn’t as condensed and simplistic as most, nor was it as hyper-focused, but then again condensing this area into 11 minutes is far from simple task. I do love that she’s excited enough about the topic that she almost sounds a little out of breath towards the end.

There’s an excellent Eddington quote I’ve mentioned before that would have been apropos to have opened up her presentation that might have brought things into higher relief given her talk title:

Suppose that we were asked to arrange the following in two categories–

distance, mass, electric force, entropy, beauty, melody.

I think there are the strongest grounds for placing entropy alongside beauty and melody and not with the first three.

Sir Arthur Stanley Eddington, OM, FRS (1882-1944), a British astronomer, physicist, and mathematician
in The Nature of the Physical World, 1927

 

🔖 The hidden simplicity of biology by Paul C W Davies and Sara Imari Walker | Reports on Progress in Physics

Bookmarked The hidden simplicity of biology (Reports on Progress in Physics)
Life is so remarkable, and so unlike any other physical system, that it is tempting to attribute special factors to it. Physics is founded on the assumption that universal laws and principles underlie all natural phenomena, but is it far from clear that there are 'laws of life' with serious descriptive or predictive power analogous to the laws of physics. Nor is there (yet) a 'theoretical biology' in the same sense as theoretical physics. Part of the obstacle in developing a universal theory of biological organization concerns the daunting complexity of living organisms. However, many attempts have been made to glimpse simplicity lurking within this complexity, and to capture this simplicity mathematically. In this paper we review a promising new line of inquiry to bring coherence and order to the realm of biology by focusing on 'information' as a unifying concept.

Downloadable free copy available on ResearchGate.

🔖 The “Hard Problem” of Life by Sara Imari Walker & Paul C.W. Davies

Bookmarked The "Hard Problem" of Life (arXiv)
Chalmer's famously identified pinpointing an explanation for our subjective experience as the "hard problem of consciousness". He argued that subjective experience constitutes a "hard problem" in the sense that its explanation will ultimately require new physical laws or principles. Here, we propose a corresponding "hard problem of life" as the problem of how `information' can affect the world. In this essay we motivate both why the problem of information as a causal agent is central to explaining life, and why it is hard - that is, why we suspect that a full resolution of the hard problem of life will, similar to as has been proposed for the hard problem of consciousness, ultimately not be reducible to known physical principles. Comments: To appear in "From Matter to Life: Information and Causality". S.I. Walker, P.C.W. Davies and G.F.R. Ellis (eds). Cambridge University Press

🔖 The Algorithmic Origins of Life – Sara Walker (SETI Talks)

Bookmarked The Algorithmic Origins of Life by Sara I. Walker (SETI Institute Talks)
The origin of life is arguably one of the greatest unanswered questions in science. A primary challenge is that without a proper definition for life -- a notoriously challenging problem in its own right -- the problem of how life began is not well posed. Here we propose that the transition from non-life to life may correspond to a fundamental shift in causal structure, where information gains direct, and context-dependent, causal efficacy over matter, a transition that may be mapped to a nontrivial distinction in how living systems process information. Dr. Walker will discuss potential measures of such a transition, which may be amenable to laboratory study, and how the proposed mechanism corresponds to the onset of the unique mode of (algorithmic) information processing characteristic of living systems.

🔖 Origins of Life: A Problem for Physics

Bookmarked Origins of Life: A Problem for Physics by Sara I. Walker (arXiv)
The origins of life stands among the great open scientific questions of our time. While a number of proposals exist for possible starting points in the pathway from non-living to living matter, these have so far not achieved states of complexity that are anywhere near that of even the simplest living systems. A key challenge is identifying the properties of living matter that might distinguish living and non-living physical systems such that we might build new life in the lab. This review is geared towards covering major viewpoints on the origin of life for those new to the origin of life field, with a forward look towards considering what it might take for a physical theory that universally explains the phenomenon of life to arise from the seemingly disconnected array of ideas proposed thus far. The hope is that a theory akin to our other theories in fundamental physics might one day emerge to explain the phenomenon of life, and in turn finally permit solving its origins.

A new fossil could push back the start of life on Earth | The Economist

Read A new fossil could push back the start of life on Earth (The Atlantic)
The putative fossils formed just a few hundred million years after Earth itself

Continue reading “A new fossil could push back the start of life on Earth | The Economist”

🔖 How Life (and Death) Spring From Disorder | Quanta Magazine

Bookmarked How Life (and Death) Spring From Disorder by Philip Ball (Quanta Magazine)
Life was long thought to obey its own set of rules. But as simple systems show signs of lifelike behavior, scientists are arguing about whether this apparent complexity is all a consequence of thermodynamics.

This is a nice little general interest article by Philip Ball that does a relatively good job of covering several of my favorite topics (information theory, biology, complexity) for the layperson. While it stays relatively basic, it links to a handful of really great references, many of which I’ve already read, though several appear to be new to me. [1][2][3][4][5][6][7][8][9][10]

While Ball has a broad area of interests and coverage in his work, he’s certainly one of the best journalists working in this subarea of interests today. I highly recommend his work to those who find this area interesting.

References

[1]
E. Mayr, What Makes Biology Unique? Cambridge University Press, 2004.
[2]
A. Wissner-Gross and C. Freer, “Causal entropic forces.,” Phys Rev Lett, vol. 110, no. 16, p. 168702, Apr. 2013. [PubMed]
[3]
A. Barato and U. Seifert, “Thermodynamic uncertainty relation for biomolecular processes.,” Phys Rev Lett, vol. 114, no. 15, p. 158101, Apr. 2015. [PubMed]
[4]
J. Shay and W. Wright, “Hayflick, his limit, and cellular ageing.,” Nat Rev Mol Cell Biol, vol. 1, no. 1, pp. 72–6, Oct. 2000. [PubMed]
[5]
X. Dong, B. Milholland, and J. Vijg, “Evidence for a limit to human lifespan,” Nature, vol. 538, no. 7624. Springer Nature, pp. 257–259, 05-Oct-2016 [Online]. Available: http://dx.doi.org/10.1038/nature19793
[6]
H. Morowitz and E. Smith, “Energy Flow and the Organization of Life,” Santa Fe Institute, 07-Aug-2006. [Online]. Available: http://samoa.santafe.edu/media/workingpapers/06-08-029.pdf. [Accessed: 03-Feb-2017]
[7]
R. Landauer, “Irreversibility and Heat Generation in the Computing Process,” IBM Journal of Research and Development, vol. 5, no. 3. IBM, pp. 183–191, Jul-1961 [Online]. Available: http://dx.doi.org/10.1147/rd.53.0183
[8]
C. Rovelli, “Meaning = Information + Evolution,” arXiv, Nov. 2006 [Online]. Available: https://arxiv.org/abs/1611.02420
[9]
N. Perunov, R. A. Marsland, and J. L. England, “Statistical Physics of Adaptation,” Physical Review X, vol. 6, no. 2. American Physical Society (APS), 16-Jun-2016 [Online]. Available: http://dx.doi.org/10.1103/PhysRevX.6.021036 [Source]
[10]
S. Still, D. A. Sivak, A. J. Bell, and G. E. Crooks, “Thermodynamics of Prediction,” Physical Review Letters, vol. 109, no. 12. American Physical Society (APS), 19-Sep-2012 [Online]. Available: http://dx.doi.org/10.1103/PhysRevLett.109.120604 [Source]