👓 Scientists rise up against statistical significance | Nature

Read Scientists rise up against statistical significance by Valentin Amrhein, Sander Greenland & Blake McShane (Nature )
Valentin Amrhein, Sander Greenland, Blake McShane and more than 800 signatories call for an end to hyped claims and the dismissal of possibly crucial effects.

🎧 Episode 121 Preparing Leaders for Complex Change | Human Current

Listened to Episode 121 Preparing Leaders for Complex Change by Angie CrossAngie Cross from HumanCurrent

In this episode, Angie talks with human-centric leader, futurist and CEO of Toffler Associates, Deborah Westphal. Westphal shares the history and legacy of Toffler Associates and provides insights into their mission to help organizations understand the dynamics of change, plan their way to the future, and then adapt. Westphal also explains four macro-drivers that are causing uncommon disruption and influencing everything we know about organizations. She explores very important questions and assumptions about power structures, technology, and societal values and advocates for leaders to focus on people, rather than processes or technology.    

This episode feels a bit like the interviewer is selling me something instead of enlightening me. I do appreciate here emphasis on human-centric approaches however. This episode focuses a lot on philosophy and approach rather than science and direct examples of applications. Meh…

🎧 Episode 120 The Social Impact of Intelligent Systems | Human Current

Listened to Episode 120 The Social Impact of Intelligent Systems by Haley Campbell-GrossHaley Campbell-Gross from HumanCurrent

In this episode, Haley talks with Dr. Mihaela Ulieru, a scholar of distributed intelligent systems, Founder and President of the IMPACT Institute for the Digital Economy, and a Fourth Industrial Revolution champion at the World Economic Forum, where she advocated to include Blockchain among the "Top 10" in 2016. Ulieru talks about the interplay between society and technology and its effects on our humanity. She shares many paradoxical examples for how technology, like artificial intelligence and blockchain, can help us transcend our limitations while also preying on them. Ulieru also urges leaders to educate themselves on the ways blockchain can streamline their business, stating it’s now “a matter of survival”.

Sometimes I get the impression that our hosts in this series can be a bit too credulous when they don’t have the technical background to push back on their interviewees. This episode is a prime example.

While Dr. Ulieru may have some of the technical background to talk about blockchain, I think it’s a bit irresponsible for her to be evangelizing it the way she is without more concrete and successful examples. This interview falls into the trap of many conversations about blockchain and evangelizing it without enough push back on its long term potential.

About 30 minutes in she mentions the Sapien Network as a replacement for social media using blockchain. I’m curious to dig into it a bit to see what it is and how it actually works. Is it or could it be IndieWeb friendly? I don’t have high hopes, but I’ll try to take a peek shortly. Again here she simply evangelizes that it’s the solution to our problems without any discussion about why except to say “but blockchain!”. At present their site says they have 5,800 users.

At about 34 minutes in she also mentions a YouTube replacement on blockchain called Snacked (perhaps I misheard her?), but I was unable to track down such a site with the functionality she mentioned. Here again she states a reasonable problem, and simply states the solution as “blockchain!” without any direct specifics about why blockchain is a good solution and how it works to make a marked improvement.

“For any business that can use blockchain (to improve their processes) and is not using it now, I think it’s a race against time right now, so educate yourself because it’s a matter of survival for your business. Especially educate your leaders.” — Dr. Mihaela Ulieru
Statements like this can be deadly for businesses when they’re done in this sort of evangelizing fashion without any supporting reasoning below it. There is too much blockchain FUD out there, particularly when the technology is over a decade old, and there are very few, if any, real success stories and lots and lots of vaporware.

❤️ randal_olson tweeted 10 most populous cities in the world from 1500-2018. #dataviz https://t.co/vtGEBVLdYk https://t.co/uvIkuE4VDI

Liked a tweet by Randy Olson Randy Olson (Twitter)

👓 How long do floods throughout the millennium remain in the collective memory? | Nature

Read How long do floods throughout the millennium remain in the collective memory? by Václav Fanta, Miroslav Šálek & Petr Sklenicka (Nature Communications, volume 10, Article number: 1105 (2019) )
Is there some kind of historical memory and folk wisdom that ensures that a community remembers about very extreme phenomena, such as catastrophic floods, and learns to establish new settlements in safer locations? We tested a unique set of empirical data on 1293 settlements founded in the course of nine centuries, during which time seven extreme floods occurred. For a period of one generation after each flood, new settlements appeared in safer places. However, respect for floods waned in the second generation and new settlements were established closer to the river. We conclude that flood memory depends on living witnesses, and fades away already within two generations. Historical memory is not sufficient to protect human settlements from the consequences of rare catastrophic floods.

This is intriguing particularly when thinking back to our earliest world literatures which all involve flood stories.

I wonder what the equivalent sorts of things would be for C. elegans, drosophila, etc. for testing things on smaller timescales?

Bookmarked From bit to it: How a complex metabolic network transforms information into living matter by Andreas Wagner (BMC Systems Biology)

Background

Organisms live and die by the amount of information they acquire about their environment. The systems analysis of complex metabolic networks allows us to ask how such information translates into fitness. A metabolic network transforms nutrients into biomass. The better it uses information on available nutrient availability, the faster it will allow a cell to divide.

Results

I here use metabolic flux balance analysis to show that the accuracy I (in bits) with which a yeast cell can sense a limiting nutrient's availability relates logarithmically to fitness as indicated by biomass yield and cell division rate. For microbes like yeast, natural selection can resolve fitness differences of genetic variants smaller than 10-6, meaning that cells would need to estimate nutrient concentrations to very high accuracy (greater than 22 bits) to ensure optimal growth. I argue that such accuracies are not achievable in practice. Natural selection may thus face fundamental limitations in maximizing the information processing capacity of cells.

Conclusion

The analysis of metabolic networks opens a door to understanding cellular biology from a quantitative, information-theoretic perspective.

https://doi.org/10.1186/1752-0509-1-33

Received: 01 March 2007 Accepted: 30 July 2007 Published: 30 July 2007

Hat tip to Paul Davies in The Demon in the Machine

Bookmarked Statistical Physics of Self-Replication by Jeremy L. England (J. Chem. Phys. 139, 121923 (2013); )
Self-replication is a capacity common to every species of living thing, and simple physical intuition dictates that such a process must invariably be fueled by the production of entropy. Here, we undertake to make this intuition rigorous and quantitative by deriving a lower bound for the amount of heat that is produced during a process of self-replication in a system coupled to a thermal bath. We find that the minimum value for the physically allowed rate of heat production is determined by the growth rate, internal entropy, and durability of the replicator, and we discuss the implications of this finding for bacterial cell division, as well as for the pre-biotic emergence of self-replicating nucleic acids.
https://doi.org/10.1063/1.4818538

Syndicated copy also available on arXiv: https://arxiv.org/abs/1209.1179

Hat tip to Paul Davies in The Demon in the Machine

👓 Defining the DNA of collaboration | The Open Co-op

Read Defining the DNA of collaboration (The Open Co-op)
As a species, human beings are barely more intelligent than kindergarten kids. We revel at our place at the top of the food chain, and praise our technological ingenuity but, let’s face it, we’ve barely begun to work life out. We’ve created one directional extractive systems that undermine our own life support systems, like kindergarten …

There’s some interesting philosophy here. It dances around the idea of fitness landscapes, but doesn’t mention them directly, though this is essentially what the article is exploring from the perspective of businesses.

👓 Neuroscience Readies for a Showdown Over Consciousness Ideas | Quanta Magazine

Read Neuroscience Readies for a Showdown Over Consciousness Ideas by Philip BallPhilip Ball (Quanta Magazine)
To make headway on the mystery of consciousness, some researchers are trying a rigorous new way to test competing theories.

Many of these ideas of consciousness seem ridiculous to me. I suppose that people need to be thinking about these ideas, iterating, and even doing some philosophy to ever get around to some better ideas and science, but it’s still very early days on the topic. I am glad that they’re actively attempting to come up with some actual science and testing of some of these theories to find a better answer.

If nothing else, this article does a reasonable job of giving an overview of some of the most recent schools of thought. And of course, it’s Philip Ball, so who could resist reading it…

🔖 The notion of information in biology, an appraisal | Jérôme Segal | Journal BIO Web of Conferences

Bookmarked The notion of information in biology, an appraisal by Jérôme SegalJérôme Segal (Journal BIO Web of Conferences Volume 4, Page 00017, 2015; ORIGINS – Studies in Biological and Cultural Evolution)

Developed during the first half of the 20th century, in three different fields, theoretical physics, statistics applied to agronomy and telecommunication engineering, the notion of information has become a scientific concept in the context of the Second War World. It is in this highly interdisciplinary environment that “information theory” emerged, combining the mathematical theory of communication and cybernetics. This theory has grown exponentially in many disciplines, including biology. The discovery of the genetic “code” has benefited from the development of a common language based on information theory and has fostered a almost imperialist development of molecular genetics, which culminated in the Human Genome Project. This project however could not fill all the raised expectations and epigenetics have shown the limits of this approach. Still, the theory of information continues to be applied in the current research, whether the application of the self-correcting coding theory to explain the conservation of genomes on a geological scale or aspects the theory of evolution.

[pdf]

https://doi.org/10.1051/bioconf/20150400017

🔖 The Negentropy Principle of Information by Leon Brillouin | Journal of Applied Physics: Vol 24, No 9

Bookmarked The Negentropy Principle of Information by Leon Brillouin (Journal of Applied Physics 24, 1152 (1953))

The statistical definition of information is compared with Boltzmann's formula for entropy. The immediate result is that information I corresponds to a negative term in the total entropy S of a system.
S=S0−I
. A generalized second principle states that S must always increase. If an experiment yields an increase ΔI of the information concerning a physical system, it must be paid for by a larger increase ΔS0 in the entropy of the system and its surrounding laboratory. The efficiency ε of the experiment is defined as ε = ΔI/ΔS0≤1. Moreover, there is a lower limit k ln2 (k, Boltzmann's constant) for the ΔS0 required in an observation. Some specific examples are discussed: length or distance measurements, time measurements, observations under a microscope. In all cases it is found that higher accuracy always means lower efficiency. The information ΔI increases as the logarithm of the accuracy, while ΔS0 goes up faster than the accuracy itself. Exceptional circumstances arise when extremely small distances (of the order of nuclear dimensions) have to be measured, in which case the efficiency drops to exceedingly low values. This stupendous increase in the cost of observation is a new factor that should probably be included in the quantum theory.

https://doi.org/10.1063/1.1721463

First appearance of the word “negentropy” that I’ve seen in the literature.

👓 Celebrating the Work and Life of Claude Elwood Shannon | IEEE Foundation

Read Celebrating the Work and Life of Claude Elwood Shannon (ieeefoundation.org)

Claude Shannon

In 2014 IEEE Information Theory Society President, Michelle Effros, knew that something had to be done. The man who coined the very phrase, Information Theory, had largely been forgotten. Given his importance, and the growing impact that his work was having on society at large, she led the IEEE Information Theory Society on a quest to use the Centennial of Claude Shannon’s birth to right this injustice.

A series of activities were planned, including a dual IEEE Milestone dedicated at both Nokia Bell Labs and MIT. Such was his stature that both institutions were intent on honoring the work he accomplished on their respective sites. His work, after all, foresaw and paved the way for the Information Revolution that we are experiencing, making possible everything from cell phones to GPS to Bitcoin.

By the time of the Nokia Bell Labs event, the keystone project – a documentary on Shannon’s life was in the formative stages. IEEE Information Theory Society leadership had secured the services of Mark Levinson, of Particle Fever acclaim. The script was being written and preliminary plans were underway.

To make the film a reality, a coalition of individuals, foundations and corporations came together with the common objective to bring the story of Shannon to as wide an audience as possible. An effective partnership was forged with the IEEE Foundation which was undertaking its own unique project - its first ever major fundraising campaign. The combination proved to be a winning entry, and the Shannon Centennial quickly became exemplary of the impact that can occur when the power of volunteers is bolstered by effective staff support.

19 June was the World Premiere of the finished product. The Bit Player was screened to a full house on the big screen at the IEEE Information Theory Society’s meeting in Vail, CO, US. The film was met with enthusiastic acclaim. Following the screening attendees were treated to a Q&A with the film’s director and star.

Among the techniques used to tell Shannon’s story was the testimony of current luminaries in the fields he inspired. All spoke of his importance and the need for his impact to be recognized. As one contributor, Andrea Goldsmith, Stephen Harris Professor in the School of Engineering, Stanford University, put it, “Today everyone carries Shannon around in their pocket”.

Based on this article the Claude Shannon movie The Bit Player has already had its premiere. I updated the IMDb entry, but I still have to wonder if it is ever going to get any distribution so that the rest of us might ever see it?

Reply to The Man Who Tried to Redeem the World with Logic | Nautilus

Replied to The Man Who Tried to Redeem the World with Logic by Amanda GefterAmanda Gefter (Nautilus)
McCulloch and Pitts were destined to live, work, and die together. Along the way, they would create the first mechanistic theory of the mind, the first computational approach to neuroscience, the logical design of modern computers, and the pillars of artificial intelligence.

Quick note of a factual and temporal error: the article indicates:

After all, it had been Wiener who discovered a precise mathematical definition of information: The higher the probability, the higher the entropy and the lower the information content.

In fact, it was Claude E. Shannon, one of Wiener’s colleagues, who wrote the influential A Mathematical Theory of Communication published in Bell System Technical Journal in 1948, almost 5 years after the 1943 part of the timeline the article is indicating. Not only did Wiener not write the paper, but it wouldn’t have existed yet to have been a factor in Pitts deciding to choose a school or adviser at the time. While Wiener may have been a tremendous polymath, I suspect that his mathematical area of expertise during those years would have been closer to analysis and not probability theory.

To put Pitts & McCulloch’s work into additional context, Claude Shannon’s stunning MIT master’s thesis A symbolic analysis of relay and switching circuits in 1940 applied Boolean algebra to electronic circuits for the first time and as a result largely allowed the digital age to blossom. It would be nice to know if Pitts & McCulloch were aware of it when they published their work three years later.