We often think of scientific ideas, such as Darwin's theory of evolution, as fixed notions that are accepted as finished. In fact, Darwin's On the Origin of Species evolved over the course of several editions he wrote, edited, and updated during his lifetime. The first English edition was approximately 150,000 words and the sixth is a much larger 190,000 words. In the changes are refinements and shifts in ideas — whether increasing the weight of a statement, adding details, or even a change in the idea itself.
Tag: history of science
I see some bits on annotation hiding in here that may be of interest to Remi Kalir and Antero Garcia.
🔖 The notion of information in biology, an appraisal | Jérôme Segal | Journal BIO Web of Conferences
Developed during the first half of the 20th century, in three different fields, theoretical physics, statistics applied to agronomy and telecommunication engineering, the notion of information has become a scientific concept in the context of the Second War World. It is in this highly interdisciplinary environment that “information theory” emerged, combining the mathematical theory of communication and cybernetics. This theory has grown exponentially in many disciplines, including biology. The discovery of the genetic “code” has benefited from the development of a common language based on information theory and has fostered a almost imperialist development of molecular genetics, which culminated in the Human Genome Project. This project however could not fill all the raised expectations and epigenetics have shown the limits of this approach. Still, the theory of information continues to be applied in the current research, whether the application of the self-correcting coding theory to explain the conservation of genomes on a geological scale or aspects the theory of evolution.
[pdf]
How Can We Apply Physics to Biology?
We don’t yet know quite what a physics of biology will consist of. But we won’t understand life without it.
Donald Forsdyke Indicates the Concept of Information in Biology Predates Claude Shannon
These two historical references predate Claude Shannon’s mathematical formalization of information in A Mathematical Theory of Communication (The Bell System Technical Journal, 1948) and even Erwin Schrödinger‘s lecture (1943) and subsequent book What is Life (1944).
For those interested in reading more on this historical tidbit, I’ve dug up a copy of the primary Forsdyke reference which first appeared on arXiv (prior to its ultimate publication in History of Psychiatry [.pdf]):
🔖 [1406.1391] ‘A Vehicle of Symbols and Nothing More.’ George Romanes, Theory of Mind, Information, and Samuel Butler by Donald R. Forsdyke [1]
Submitted on 4 Jun 2014 (v1), last revised 13 Nov 2014 (this version, v2)
Abstract: Today’s ‘theory of mind’ (ToM) concept is rooted in the distinction of nineteenth century philosopher William Clifford between ‘objects’ that can be directly perceived, and ‘ejects,’ such as the mind of another person, which are inferred from one’s subjective knowledge of one’s own mind. A founder, with Charles Darwin, of the discipline of comparative psychology, George Romanes considered the minds of animals as ejects, an idea that could be generalized to ‘society as eject’ and, ultimately, ‘the world as an eject’ – mind in the universe. Yet, Romanes and Clifford only vaguely connected mind with the abstraction we call ‘information,’ which needs ‘a vehicle of symbols’ – a material transporting medium. However, Samuel Butler was able to address, in informational terms depleted of theological trappings, both organic evolution and mind in the universe. This view harmonizes with insights arising from modern DNA research, the relative immortality of ‘selfish’ genes, and some startling recent developments in brain research.
Comments: Accepted for publication in History of Psychiatry. 31 pages including 3 footnotes. Based on a lecture given at Santa Clara University, February 28th 2014, at a Bannan Institute Symposium on ‘Science and Seeking: Rethinking the God Question in the Lab, Cosmos, and Classroom.’
The original arXiv article also referenced two lectures which are appended below:
http://www.youtube.com/watch?v=a3yNbTUCPd4
[Original Draft of this was written on December 14, 2015.]
References
Originally published in 1969. This book explains what is wrong with the traditional methodology of “inductive” reasoning and shows that the alternative scheme of reasoning associated with Whewell, Pierce and Popper can give the scientist a useful insight into the way he thinks.
References:
- History of the Inductive Sciences by William Whewell (1837)
- Introduction à l’étude de la médecine expérimentale by Claude Bernard (Paris, 1865)
- Karl Popper
- Karl Pearson (math)