👓 The Man Who Tried to Redeem the World with Logic | Issue 21: Information – Nautilus

Read The Man Who Tried to Redeem the World with Logic (Nautilus)
Walter Pitts was used to being bullied. He’d been born into a tough family in Prohibition-era Detroit, where his father, a boiler-maker,…

Highlights, Quotes, Annotations, & Marginalia

McCulloch was a confident, gray-eyed, wild-bearded, chain-smoking philosopher-poet who lived on whiskey and ice cream and never went to bed before 4 a.m.  

Now that is a business card title!

March 03, 2019 at 06:01PM

McCulloch and Pitts were destined to live, work, and die together. Along the way, they would create the first mechanistic theory of the mind, the first computational approach to neuroscience, the logical design of modern computers, and the pillars of artificial intelligence.  

tl;dr

March 03, 2019 at 06:06PM

Gottfried Leibniz. The 17th-century philosopher had attempted to create an alphabet of human thought, each letter of which represented a concept and could be combined and manipulated according to a set of logical rules to compute all knowledge—a vision that promised to transform the imperfect outside world into the rational sanctuary of a library.  

I don’t think I’ve ever heard this quirky story…

March 03, 2019 at 06:08PM

Which got McCulloch thinking about neurons. He knew that each of the brain’s nerve cells only fires after a minimum threshold has been reached: Enough of its neighboring nerve cells must send signals across the neuron’s synapses before it will fire off its own electrical spike. It occurred to McCulloch that this set-up was binary—either the neuron fires or it doesn’t. A neuron’s signal, he realized, is a proposition, and neurons seemed to work like logic gates, taking in multiple inputs and producing a single output. By varying a neuron’s firing threshold, it could be made to perform “and,” “or,” and “not” functions.  

I’m curious what year this was, particularly in relation to Claude Shannon’s master’s thesis in which he applied Boolean algebra to electronics.
Based on their meeting date, it would have to be after 1940.And they published in 1943: https://link.springer.com/article/10.1007%2FBF02478259

March 03, 2019 at 06:14PM

McCulloch and Pitts alone would pour the whiskey, hunker down, and attempt to build a computational brain from the neuron up.  

A nice way to pass the time to be sure. Naturally mathematicians would have been turning “coffee into theorems” instead of whiskey.

March 03, 2019 at 06:15PM

“an idea wrenched out of time.” In other words, a memory.  

March 03, 2019 at 06:17PM

McCulloch and Pitts wrote up their findings in a now-seminal paper, “A Logical Calculus of Ideas Immanent in Nervous Activity,” published in the Bulletin of Mathematical Biophysics.  

March 03, 2019 at 06:21PM

I really like this picture here. Perhaps for a business card?
colorful painting of man sitting with abstract structure around him
  
March 03, 2019 at 06:23PM

it had been Wiener who discovered a precise mathematical definition of information: The higher the probability, the higher the entropy and the lower the information content.  

Oops, I think this article is confusing Wiener with Claude Shannon?

March 03, 2019 at 06:34PM

By the fall of 1943, Pitts had moved into a Cambridge apartment, was enrolled as a special student at MIT, and was studying under one of the most influential scientists in the world.  

March 03, 2019 at 06:32PM

Thus formed the beginnings of the group who would become known as the cyberneticians, with Wiener, Pitts, McCulloch, Lettvin, and von Neumann its core.  

Wiener always did like cyberneticians for it’s parallelism with mathematicians….

March 03, 2019 at 06:38PM

In the entire report, he cited only a single paper: “A Logical Calculus” by McCulloch and Pitts.  

First Draft of a Report on EDVAC by jon von Neumann

March 03, 2019 at 06:43PM

Oliver Selfridge, an MIT student who would become “the father of machine perception”; Hyman Minsky, the future economist; and Lettvin.  

March 03, 2019 at 06:44PM

at the Second Cybernetic Conference, Pitts announced that he was writing his doctoral dissertation on probabilistic three-dimensional neural networks.  

March 03, 2019 at 06:44PM

In June 1954, Fortune magazine ran an article featuring the 20 most talented scientists under 40; Pitts was featured, next to Claude Shannon and James Watson.  

March 03, 2019 at 06:46PM

Lettvin, along with the young neuroscientist Patrick Wall, joined McCulloch and Pitts at their new headquarters in Building 20 on Vassar Street. They posted a sign on the door: Experimental Epistemology.  

March 03, 2019 at 06:47PM

“The eye speaks to the brain in a language already highly organized and interpreted,” they reported in the now-seminal paper “What the Frog’s Eye Tells the Frog’s Brain,” published in 1959.  

March 03, 2019 at 06:50PM

There was a catch, though: This symbolic abstraction made the world transparent but the brain opaque. Once everything had been reduced to information governed by logic, the actual mechanics ceased to matter—the tradeoff for universal computation was ontology. Von Neumann was the first to see the problem. He expressed his concern to Wiener in a letter that anticipated the coming split between artificial intelligence on one side and neuroscience on the other. “After the great positive contribution of Turing-cum-Pitts-and-McCulloch is assimilated,” he wrote, “the situation is rather worse than better than before. Indeed these authors have demonstrated in absolute and hopeless generality that anything and everything … can be done by an appropriate mechanism, and specifically by a neural mechanism—and that even one, definite mechanism can be ‘universal.’ Inverting the argument: Nothing that we may know or learn about the functioning of the organism can give, without ‘microscopic,’ cytological work any clues regarding the further details of the neural mechanism.”  

March 03, 2019 at 06:54PM

Nature had chosen the messiness of life over the austerity of logic, a choice Pitts likely could not comprehend. He had no way of knowing that while his ideas about the biological brain were not panning out, they were setting in motion the age of digital computing, the neural network approach to machine learning, and the so-called connectionist philosophy of mind.  

March 03, 2019 at 06:55PM

by stringing them together exactly as Pitts and McCulloch had discovered, you could carry out any computation.  

I feel like this is something more akin to what may have been already known from Boolean algebra and Whitehead/Russell by this time. Certainly Shannon would have known of it?

March 03, 2019 at 06:58PM

🔖 How Life (and Death) Spring From Disorder | Quanta Magazine

Bookmarked How Life (and Death) Spring From Disorder by Philip Ball (Quanta Magazine)
Life was long thought to obey its own set of rules. But as simple systems show signs of lifelike behavior, scientists are arguing about whether this apparent complexity is all a consequence of thermodynamics.
This is a nice little general interest article by Philip Ball that does a relatively good job of covering several of my favorite topics (information theory, biology, complexity) for the layperson. While it stays relatively basic, it links to a handful of really great references, many of which I’ve already read, though several appear to be new to me. [1][2][3][4][5][6][7][8][9][10]

While Ball has a broad area of interests and coverage in his work, he’s certainly one of the best journalists working in this subarea of interests today. I highly recommend his work to those who find this area interesting.

References

[1]
E. Mayr, What Makes Biology Unique? Cambridge University Press, 2004.
[2]
A. Wissner-Gross and C. Freer, “Causal entropic forces.,” Phys Rev Lett, vol. 110, no. 16, p. 168702, Apr. 2013. [PubMed]
[3]
A. Barato and U. Seifert, “Thermodynamic uncertainty relation for biomolecular processes.,” Phys Rev Lett, vol. 114, no. 15, p. 158101, Apr. 2015. [PubMed]
[4]
J. Shay and W. Wright, “Hayflick, his limit, and cellular ageing.,” Nat Rev Mol Cell Biol, vol. 1, no. 1, pp. 72–6, Oct. 2000. [PubMed]
[5]
X. Dong, B. Milholland, and J. Vijg, “Evidence for a limit to human lifespan,” Nature, vol. 538, no. 7624. Springer Nature, pp. 257–259, 05-Oct-2016 [Online]. Available: http://dx.doi.org/10.1038/nature19793
[6]
H. Morowitz and E. Smith, “Energy Flow and the Organization of Life,” Santa Fe Institute, 07-Aug-2006. [Online]. Available: http://samoa.santafe.edu/media/workingpapers/06-08-029.pdf. [Accessed: 03-Feb-2017]
[7]
R. Landauer, “Irreversibility and Heat Generation in the Computing Process,” IBM Journal of Research and Development, vol. 5, no. 3. IBM, pp. 183–191, Jul-1961 [Online]. Available: http://dx.doi.org/10.1147/rd.53.0183
[8]
C. Rovelli, “Meaning = Information + Evolution,” arXiv, Nov. 2006 [Online]. Available: https://arxiv.org/abs/1611.02420
[9]
N. Perunov, R. A. Marsland, and J. L. England, “Statistical Physics of Adaptation,” Physical Review X, vol. 6, no. 2. American Physical Society (APS), 16-Jun-2016 [Online]. Available: http://dx.doi.org/10.1103/PhysRevX.6.021036 [Source]
[10]
S. Still, D. A. Sivak, A. J. Bell, and G. E. Crooks, “Thermodynamics of Prediction,” Physical Review Letters, vol. 109, no. 12. American Physical Society (APS), 19-Sep-2012 [Online]. Available: http://dx.doi.org/10.1103/PhysRevLett.109.120604 [Source]

Network Science by Albert-László Barabási

Bookmarked Network Science by Albert-László BarabásiAlbert-László Barabási (Cambridge University Press)
I ran across a link to this textbook by way of a standing Google alert, and was excited to check it out. I was immediately disappointed to think that I would have to wait another month and change for the physical textbook to be released, but made my pre-order directly. Then with a bit of digging around, I realized that individual chapters are available immediately to quench my thirst until the physical text is printed next month.

The power of network science, the beauty of network visualization.

Network Science, a textbook for network science, is freely available under the Creative Commons licence. Follow its development on Facebook, Twitter or by signing up to our mailing list, so that we can notify you of new chapters and developments.

The book is the result of a collaboration between a number of individuals, shaping everything, from content (Albert-László Barabási), to visualizations and interactive tools (Gabriele Musella, Mauro Martino, Nicole Samay, Kim Albrecht), simulations and data analysis (Márton Pósfai). The printed version of the book will be published by Cambridge University Press in 2016. In the coming months the website will be expanded with an interactive version of the text, datasets, and slides to teach the material.

Book Contents

Personal Introduction
1. Introduction
2. Graph Theory
3. Random Networks
4. The Scale-Free Property
5. The Barabási-Albert Model
6. Evolving Networks
7. Degree Correlations
8. Network Robustness
9. Communities
10. Spreading Phenomena
Usage & Acknowledgements
About

Albert-László Barabási
on Network Science (book website)

Networks are everywhere, from the Internet, to social networks, and the genetic networks that determine our biological existence. Illustrated throughout in full colour, this pioneering textbook, spanning a wide range of topics from physics to computer science, engineering, economics and the social sciences, introduces network science to an interdisciplinary audience. From the origins of the six degrees of separation to explaining why networks are robust to random failures, the author explores how viruses like Ebola and H1N1 spread, and why it is that our friends have more friends than we do. Using numerous real-world examples, this innovatively designed text includes clear delineation between undergraduate and graduate level material. The mathematical formulas and derivations are included within Advanced Topics sections, enabling use at a range of levels. Extensive online resources, including films and software for network analysis, make this a multifaceted companion for anyone with an interest in network science.

Source: Cambridge University Press

The textbook is available for purchase in September 2016 from Cambridge University Press. Pre-order now on Amazon.com.

If you’re not already doing so, you should follow Barabási on Twitter.

How Can We Apply Physics to Biology?

Bookmarked How Can We Apply Physics to Biology? by Philip Ball (nautil.us)
We don’t yet know quite what a physics of biology will consist of. But we won’t understand life without it.
This is an awesome little article with some interesting thought and philosophy on the current state of physics within biology and other related areas of study. It’s also got some snippets of history which aren’t frequently discussed in longer form texts.

You and I Are Not Much Different from Cans of Soup

Philip Nelson, American physicist
in Biological Physics: Energy, Information, Life

 

Biological Physics: Energy, Information, Life written by Philip Nelson
Biological Physics: Energy, Information, Life written by Philip Nelson