Pages 71-96 | Published online: 15 Apr 2008
https://doi.org/10.1080/01969727108545830
Proto-organisms probably were randomly aggregated nets of chemical reactions. The hypothesis that contemporary organisms are also randomly constructed molecular automata is examined by modeling the gene as a binary (on-off) device and studying the behavior of large, randomly constructed nets of these binary “genes.” The results suggest that, if each “gene” is directly affected by two or three other “genes,” then such random nets: behave with great order and stability; undergo behavior cycles whose length predicts cell replication time as a function of the number of genes per cell; possess different modes of behavior whose number per net predicts roughly the number of cell types in an organism as a function of its number of genes; and under the stimulus of noise are capable of differentiating directly from any mode of behavior to at most a few other modes of behavior. Cellular differentiation is modeled as a Markov chain among the modes of behavior of a genetic net. The possibility of a general theory of metabolic behavior is suggested. Analytic approaches to the behavior of switching nets are discussed in Appendix 1, and some implications of the results for the origin of self replicating macromolecular systems is discussed in Appendix 6.
Tag: cybernetics
👓 The Man Who Tried to Redeem the World with Logic | Issue 21: Information – Nautilus
Walter Pitts was used to being bullied. He’d been born into a tough family in Prohibition-era Detroit, where his father, a boiler-maker,…
Highlights, Quotes, Annotations, & Marginalia
McCulloch was a confident, gray-eyed, wild-bearded, chain-smoking philosopher-poet who lived on whiskey and ice cream and never went to bed before 4 a.m. ❧
March 03, 2019 at 06:01PM
McCulloch and Pitts were destined to live, work, and die together. Along the way, they would create the first mechanistic theory of the mind, the first computational approach to neuroscience, the logical design of modern computers, and the pillars of artificial intelligence. ❧
March 03, 2019 at 06:06PM
Gottfried Leibniz. The 17th-century philosopher had attempted to create an alphabet of human thought, each letter of which represented a concept and could be combined and manipulated according to a set of logical rules to compute all knowledge—a vision that promised to transform the imperfect outside world into the rational sanctuary of a library. ❧
March 03, 2019 at 06:08PM
Which got McCulloch thinking about neurons. He knew that each of the brain’s nerve cells only fires after a minimum threshold has been reached: Enough of its neighboring nerve cells must send signals across the neuron’s synapses before it will fire off its own electrical spike. It occurred to McCulloch that this set-up was binary—either the neuron fires or it doesn’t. A neuron’s signal, he realized, is a proposition, and neurons seemed to work like logic gates, taking in multiple inputs and producing a single output. By varying a neuron’s firing threshold, it could be made to perform “and,” “or,” and “not” functions. ❧
Based on their meeting date, it would have to be after 1940.And they published in 1943: https://link.springer.com/article/10.1007%2FBF02478259
March 03, 2019 at 06:14PM
McCulloch and Pitts alone would pour the whiskey, hunker down, and attempt to build a computational brain from the neuron up. ❧
March 03, 2019 at 06:15PM
“an idea wrenched out of time.” In other words, a memory. ❧
March 03, 2019 at 06:17PM
McCulloch and Pitts wrote up their findings in a now-seminal paper, “A Logical Calculus of Ideas Immanent in Nervous Activity,” published in the Bulletin of Mathematical Biophysics. ❧
March 03, 2019 at 06:21PM
I really like this picture here. Perhaps for a business card?
❧
March 03, 2019 at 06:23PM
it had been Wiener who discovered a precise mathematical definition of information: The higher the probability, the higher the entropy and the lower the information content. ❧
March 03, 2019 at 06:34PM
By the fall of 1943, Pitts had moved into a Cambridge apartment, was enrolled as a special student at MIT, and was studying under one of the most influential scientists in the world. ❧
March 03, 2019 at 06:32PM
Thus formed the beginnings of the group who would become known as the cyberneticians, with Wiener, Pitts, McCulloch, Lettvin, and von Neumann its core. ❧
March 03, 2019 at 06:38PM
In the entire report, he cited only a single paper: “A Logical Calculus” by McCulloch and Pitts. ❧
March 03, 2019 at 06:43PM
Oliver Selfridge, an MIT student who would become “the father of machine perception”; Hyman Minsky, the future economist; and Lettvin. ❧
March 03, 2019 at 06:44PM
at the Second Cybernetic Conference, Pitts announced that he was writing his doctoral dissertation on probabilistic three-dimensional neural networks. ❧
March 03, 2019 at 06:44PM
In June 1954, Fortune magazine ran an article featuring the 20 most talented scientists under 40; Pitts was featured, next to Claude Shannon and James Watson. ❧
March 03, 2019 at 06:46PM
Lettvin, along with the young neuroscientist Patrick Wall, joined McCulloch and Pitts at their new headquarters in Building 20 on Vassar Street. They posted a sign on the door: Experimental Epistemology. ❧
March 03, 2019 at 06:47PM
“The eye speaks to the brain in a language already highly organized and interpreted,” they reported in the now-seminal paper “What the Frog’s Eye Tells the Frog’s Brain,” published in 1959. ❧
March 03, 2019 at 06:50PM
There was a catch, though: This symbolic abstraction made the world transparent but the brain opaque. Once everything had been reduced to information governed by logic, the actual mechanics ceased to matter—the tradeoff for universal computation was ontology. Von Neumann was the first to see the problem. He expressed his concern to Wiener in a letter that anticipated the coming split between artificial intelligence on one side and neuroscience on the other. “After the great positive contribution of Turing-cum-Pitts-and-McCulloch is assimilated,” he wrote, “the situation is rather worse than better than before. Indeed these authors have demonstrated in absolute and hopeless generality that anything and everything … can be done by an appropriate mechanism, and specifically by a neural mechanism—and that even one, definite mechanism can be ‘universal.’ Inverting the argument: Nothing that we may know or learn about the functioning of the organism can give, without ‘microscopic,’ cytological work any clues regarding the further details of the neural mechanism.” ❧
March 03, 2019 at 06:54PM
Nature had chosen the messiness of life over the austerity of logic, a choice Pitts likely could not comprehend. He had no way of knowing that while his ideas about the biological brain were not panning out, they were setting in motion the age of digital computing, the neural network approach to machine learning, and the so-called connectionist philosophy of mind. ❧
March 03, 2019 at 06:55PM
by stringing them together exactly as Pitts and McCulloch had discovered, you could carry out any computation. ❧
March 03, 2019 at 06:58PM
📑 Walter Pitts by Neil Smalheiser | Journal Perspectives in Biology and Medicine
Walter Pitts was pivotal in establishing the revolutionary notion of the brain as a computer, which was seminal in the development of computer design, cybernetics, artificial intelligence, and theoretical neuroscience. He was also a participant in a large number of key advances in 20th-century science. ❧
👓 The Beautiful Mind-Bending of Stanislaw Lem | The New Yorker
The massive popularity of “Solaris” helped Lem become one of the most widely read science-fiction writers in the world. Yet his writing reached far beyond the borders of the genre.
👓 The Problem With Feedback | The Atlantic
Companies and apps constantly ask for ratings, but all that data may just be noise in the system.
❤️ drmichaellevin tweet about cybernetics
A definition of #Cybernetics:
— Michael Levin (@drmichaellevin) May 15, 2018
"Science concerned with the study of systems of any nature which are capable of receiving, storing and processing information so as to use it for control." -A. N. Kolmogorov pic.twitter.com/71I6mFRqT0
Devourer of Encyclopedias: Stanislaw Lem’s “Summa Technologiae”
A review of Summa Technologiae by Stanislaw Lem by David Auerbach from the Los Angeles Review of Books.
Summa Technologiae
AT LAST WE have it in English. Summa Technologiae, originally published in Polish in 1964, is the cornerstone of Stanislaw Lem’s oeuvre, his consummate work of speculative nonfiction. Trained in medicine and biology, Lem synthesizes the current science of the day in ways far ahead of most science fiction of the time.
His subjects, among others, include:
- Virtual reality
- Artificial intelligence
- Nanotechnology and biotechnology
- Evolutionary biology and evolutionary psychology
- Artificial life
- Information theory
- Entropy and thermodynamics
- Complexity theory, probability, and chaos
- Population and ecological catastrophe
- The “singularity” and “transhumanism”
Source: Devourer of Encyclopedias: Stanislaw Lem’s “Summa Technologiae” – The Los Angeles Review of Books
I came across this book review quite serendipitously today via an Auerbach article in Slate, which I’ve bookmarked. I found a copy of the book and have added it to the top of my reading pile. As I’m currently reading an advance reader edition of Sean Carroll’s The Big Picture, I can only imagine how well the two may go together despite being written nearly 60 years apart.
New Routledge Text on Systems Theory
MIAMI, Fla., Dec. 19, 2013
Dr. Darrell Arnold, Assistant Professor of Philosophy and Director of the Institute for World Languages and Cultures at St. Thomas University, has published an edited volume with Routledge entitled Traditions of Systems Theory: Major Figures and Contemporary Developments. Hans-Georg Moeller, of University College Cork, Ireland, notes that the book “provides a state-of-the-art survey of the increasingly influential and fascinating field of systems theory. It is a highly useful resource for a wide range of disciplines and contributes significantly to bringing together current trends in the sciences and the humanities.” The book includes 17 articles from leading theoreticians in the field, including pieces by Ranulph Glanville, the President of the American Society for Cybernetics, as well as Debora Hammond, the former President of the International Society for Systems Sciences. It is the first comprehensive edited volume in English on the major and countervailing developments within systems theory.Dr. Arnold writes on 19th century German philosophy, contemporary social theory, as well as technology and globalization, with a focus on how these areas relate to the environmental problematic. He has translated numerous books from German, including C. Mantzavinos’s Naturalistic Hermeneutics (Cambridge UP) and Matthias Vogel’s Media of Reason (Columbia UP). Dr. Arnold is also editor-in-chief of the Humanities and Technology Review.
For additional information on St. Thomas University academic programs and faculty publications, please contact Marivi Prado, Chief Marketing Officer, 305.474.6880; mprado@stu.edu
I’ve ordered my copy and will be providing a review shortly.