🔖 Gems And Astonishments of Mathematics: Past and Present | Dr. Mike Miller at UCLA Extension

Bookmarked Gems And Astonishments of Mathematics: Past and Present (UCLA Continuing Education)

Mathematics has evolved over the centuries not only by building on the work of past generations, but also through unforeseen discoveries or conjectures that continue to tantalize, bewilder, and engage academics and the public alike.  This course, the first in a two-quarter sequence, is a survey of about two dozen problems—some dating back 400 years, but all readily stated and understood—that either remain unsolved or have been settled in fairly recent times.  Each of them, aside from presenting its own intrigue, has led to the development of novel mathematical approaches to problem solving.  Topics to be discussed include (Google away!): Conway’s Look and Say Sequences, Kepler’s Conjecture, Szilassi’s Polyhedron, the ABC Conjecture, Benford’s Law, Hadamard’s Conjecture, Parrondo’s Paradox, and the Collatz Conjecture.  The course should appeal to devotees of mathematical reasoning and those wishing to keep abreast of recent and continuing mathematical developments.

Suggested prerequisites: Some exposure to advanced mathematical methods, particularly those pertaining to number theory and matrix theory.

Tuesday 7:00PM - 10:00PM
Location: UCLA
Instructor: Michael Miller
MATH X 451.44 | 362773
Fee: $453.00

I’ve been waiting with bated breath to see what Dr. Miller would be offering in the evenings at UCLA Extension this Fall and Winter quarters. The wait is over, though it’ll be a few days before we can register.

If you’re interested in math at all, I hope you’ll come join the 20+ other students who follow everything that Mike teaches. Once you’ve taken one course from him, you’ll be addicted.

Syndicated copies to:

6 responses on “🔖 Gems And Astonishments of Mathematics: Past and Present | Dr. Mike Miller at UCLA Extension”


  • Don Corleone@"Run Silent, Run Deep"
  • UCLA Extension

Leave a Reply

Your email address will not be published. Required fields are marked *

To respond on your own website, enter the URL of your response which should contain a link to this post's permalink URL. Your response will then appear (possibly after moderation) on this page. Want to update or remove your response? Update or delete your post and re-enter your post's URL again. (Learn More)