🔖 The ErdĹ‘s Discrepancy Problem (6.09.2017) | Terence Tao | YouTube

Bookmarked The Erdős Discrepancy Problem (6.09.2017) at Instytut Matematyczny Uniwersytetu Wrocławskiego by Terence TaoTerence Tao (YouTube)

The discrepancy of a sequence f(1), f(2), ... of numbers is defined to be the largest value of |f(d) + f(2d) + ... + f(nd)| as n and d range over the natural numbers. In the 1930s, Erdős posed the question of whether any sequence consisting only of +1 and -1 could have bounded discrepancy. In 2010, the collaborative Polymath5 project showed (among other things) that the problem could be effectively reduced to a problem involving completely multiplicative sequences. Finally, using recent breakthroughs in the asymptotics of completely multiplicative sequences by Matomaki and Radziwiłł, as well as a surprising application of the Shannon entropy inequalities, the Erdős discrepancy problem was solved in 2015. In his talk TT will discuss this solution and its connection to the Chowla and Elliott conjectures in number theory.

Published by

Chris Aldrich

I'm a biomedical and electrical engineer with interests in information theory, complexity, evolution, genetics, signal processing, theoretical mathematics, and big history. I'm also a talent manager-producer-publisher in the entertainment industry with expertise in representation, distribution, finance, production, content delivery, and new media.

Leave a Reply

Your email address will not be published. Required fields are marked *