Bookmarked Statistical Physics of Self-Replication by Jeremy L. England (J. Chem. Phys. 139, 121923 (2013); )
Self-replication is a capacity common to every species of living thing, and simple physical intuition dictates that such a process must invariably be fueled by the production of entropy. Here, we undertake to make this intuition rigorous and quantitative by deriving a lower bound for the amount of heat that is produced during a process of self-replication in a system coupled to a thermal bath. We find that the minimum value for the physically allowed rate of heat production is determined by the growth rate, internal entropy, and durability of the replicator, and we discuss the implications of this finding for bacterial cell division, as well as for the pre-biotic emergence of self-replicating nucleic acids.
https://doi.org/10.1063/1.4818538
Syndicated copy also available on arXiv: https://arxiv.org/abs/1209.1179

Hat tip to Paul Davies in The Demon in the Machine

Published by

Chris Aldrich

I'm a biomedical and electrical engineer with interests in information theory, complexity, evolution, genetics, signal processing, IndieWeb, theoretical mathematics, and big history. I'm also a talent manager-producer-publisher in the entertainment industry with expertise in representation, distribution, finance, production, content delivery, and new media.

Leave a Reply

Your email address will not be published. Required fields are marked *