🔖 A de Bruijn identity for discrete random variables by Oliver Johnson, Saikat Guha

Bookmarked A de Bruijn identity for discrete random variables by Oliver Johnson, Saikat Guha (arxiv.org)
We discuss properties of the "beamsplitter addition" operation, which provides a non-standard scaled convolution of random variables supported on the non-negative integers. We give a simple expression for the action of beamsplitter addition using generating functions. We use this to give a self-contained and purely classical proof of a heat equation and de Bruijn identity, satisfied when one of the variables is geometric.
Syndicated copies to:

3 responses on “🔖 A de Bruijn identity for discrete random variables by Oliver Johnson, Saikat Guha”

Reposts

  • Oliver Johnson

Leave a Reply

Your email address will not be published. Required fields are marked *

To respond on your own website, enter the URL of your response which should contain a link to this post's permalink URL. Your response will then appear (possibly after moderation) on this page. Want to update or remove your response? Update or delete your post and re-enter your post's URL again. (Learn More)