A system responding to a stochastic driving signal can be interpreted as computing, by means of its dynamics, an implicit model of the environmental variables. The system’s state retains information about past environmental fluctuations, and a fraction of this information is predictive of future ones. The remaining nonpredictive information reflects model complexity that does not improve predictive power, and thus represents the ineffectiveness of the model. We expose the fundamental equivalence between this model inefficiency and thermodynamic inefficiency, measured by dissipation. Our results hold arbitrarily far from thermodynamic equilibrium and are applicable to a wide range of systems, including biomolecular machines. They highlight a profound connection between the effective use of information and efficient thermodynamic operation: any system constructed to keep memory about its environment and to operate with maximal energetic efficiency has to be predictive.
Tag: stochastic processes
🔖 100 years after Smoluchowski: stochastic processes in cell biology
100 years after Smoluchowski introduces his approach to stochastic processes, they are now at the basis of mathematical and physical modeling in cellular biology: they are used for example to analyse and to extract features from large number (tens of thousands) of single molecular trajectories or to study the diffusive motion of molecules, proteins or receptors. Stochastic modeling is a new step in large data analysis that serves extracting cell biology concepts. We review here the Smoluchowski's approach to stochastic processes and provide several applications for coarse-graining diffusion, studying polymer models for understanding nuclear organization and finally, we discuss the stochastic jump dynamics of telomeres across cell division and stochastic gene regulation.
65 pages, J. Phys A 2016 [1]
References
[1]
D. Holcman and Z. Schuss, “100 years after Smoluchowski: stochastic processes in cell biology,” arXiv, 26-Dec-2016. [Online]. Available: https://arxiv.org/abs/1612.08381. [Accessed: 03-Jan-2017]