This course is an introduction to the basic tenets of category theory, as formulated and illustrated through examples drawn from algebra, calculus, geometry, set theory, topology, number theory, and linear algebra.
Category theory, since its development in the 1940s, has assumed an increasingly center-stage role in formalizing mathematics and providing tools to diverse scientific disciplines, most notably computer science. A category is fundamentally a family of mathematical obejcts (e.g., numbers, vector spaces, groups, topological spaces) along with “mappings” (so-called morphisms) between these objects that, in some defined sense, preserve structure. Taking it one step further, one can consider morphisms (so-called functors) between categories. This course is an introduction to the basic tenets of category theory, as formulated and illustrated through examples drawn from algebra, calculus, geometry, set theory, topology, number theory, and linear algebra. Topics to be discussed include: isomorphism; products and coproducts; dual categories; covariant, contravariant, and adjoint functors; abelian and additive categories; and the Yoneda Lemma. The course should appeal to devotees of mathematical reasoning, computer scientists, and those wishing to gain basic insights into a hot area of mathematics.
January 8, 2019 - March 19, 2019
Tuesday 7:00PM - 10:00PM
Location: UCLA
Instructor: Michael Miller
Fee: $453.00
Oddly, it wasn’t listed in the published physical catalog, but it’s available online. I hope that those interested in mathematics will register as well as those who are interested in computer science.
Congratulations on your new math class, and welcome to the “family”! Beginners Welcome! Invariably the handful of new students every year eventually figure the logistics…
Syndicated copies:
Good luck!