Gems And Astonishments of Mathematics: Past and Present—Lecture One

Last night was the first lecture of Dr. Miller’s Gems And Astonishments of Mathematics: Past and Present class at UCLA Extension. There are a good 15 or so people in the class, so there’s still room (and time) to register if you’re interested. While Dr. Miller typically lectures on one broad topic for a quarter (or sometimes two) in which the treatment continually builds heavy complexity over time, this class will cover 1-2 much smaller particular mathematical problems each week. Thus week 11 won’t rely on knowing all the material from the prior weeks, which may make things easier for some who are overly busy. If you have the time on Tuesday nights and are interested in math or love solving problems, this is an excellent class to consider. If you’re unsure, stop by one of the first lectures on Tuesday nights from 7-10 to check them out before registering.

Lecture notes

For those who may have missed last night’s first lecture, I’m linking to a Livescribe PDF document which includes the written notes as well as the accompanying audio from the lecture. If you view it in Acrobat Reader version X (or higher), you should be able to access the audio portion of the lecture and experience it in real time almost as if you had been present in person. (Instructions for using Livescribe PDF documents.)

We’ve covered the following topics:

  • Class Introduction
  • Erdős Discrepancy Problem
    • n-cubes
    • Hilbert’s Cube Lemma (1892)
    • Schur (1916)
    • Van der Waerden (1927)
  • Sylvester’s Line Problem (partial coverage to be finished in the next lecture)
    • Ramsey Theory
    • Erdős (1943)
    • Gallai (1944)
    • Steinberg’s alternate (1944)
    • DeBruijn and Erdős (1948)
    • Motzkin (1951)
    • Dirac (1951)
    • Kelly & Moser (1958)
    • Tao-Green Proof
  • Homework 1 (homeworks are generally not graded)

Over the coming days and months, I’ll likely bookmark some related papers and research on these and other topics in the class using the class identifier MATHX451.44 as a tag in addition to topic specific tags.

Course Description

Mathematics has evolved over the centuries not only by building on the work of past generations, but also through unforeseen discoveries or conjectures that continue to tantalize, bewilder, and engage academics and the public alike. This course, the first in a two-quarter sequence, is a survey of about two dozen problems—some dating back 400 years, but all readily stated and understood—that either remain unsolved or have been settled in fairly recent times. Each of them, aside from presenting its own intrigue, has led to the development of novel mathematical approaches to problem solving. Topics to be discussed include (Google away!): Conway’s Look and Say Sequences, Kepler’s Conjecture, Szilassi’s Polyhedron, the ABC Conjecture, Benford’s Law, Hadamard’s Conjecture, Parrondo’s Paradox, and the Collatz Conjecture. The course should appeal to devotees of mathematical reasoning and those wishing to keep abreast of recent and continuing mathematical developments.

Suggested Prerequisites

Some exposure to advanced mathematical methods, particularly those pertaining to number theory and matrix theory. Most in the class are taking the course for “fun” and the enjoyment of learning, so there is a huge breadth of mathematical abilities represented–don’t not take the course because you feel you’ll get lost.

Register now

I’ve written some general thoughts, hints, and tips on these courses in the past.

Renovated Classrooms

I’d complained to the UCLA administration before about how dirty the windows were in the Math Sciences Building, but they went even further than I expected in fixing the problem. Not only did they clean the windows they put in new flooring, brand new modern chairs, wood paneling on the walls, new projection, and new white boards! I particularly love the new swivel chairs, and it’s nice to have such a lovely new environment in which to study math.

The newly renovated classroom space in UCLA’s Math Sciences Building

Category Theory for Winter 2019

As I mentioned the other day, Dr. Miller has also announced (and reiterated last night) that he’ll be teaching a course on the topic of Category Theory for the Winter quarter coming up. Thus if you’re interested in abstract mathematics or areas of computer programming that use it, start getting ready!

Syndicated copies to:

👓 What is Applied Category Theory? | Azimuth

Read What is Applied Category Theory? by John Carlos Baez (Azimuth)
Tai-Danae Bradley has a new free “booklet” on applied category theory. It was inspired by the workshop Applied Category Theory 2018, which she attended, and I think it makes a great com…
Syndicated copies to:

As I get amped up for the start of Mike Miller’s Fall math class Gems and Astonishments of Mathematics, which is still open for registration, I’m even more excited that he’s emailed me to say that he’ll be teaching Category Theory for the Winter Quarter in 2019!!

 

 

Syndicated copies to:

🔖 [1809.05923] What is Applied Category Theory? by Tai-Danae Bradley

Bookmarked [1809.05923] What is Applied Category Theory? by Tai-Danae BradleyTai-Danae Bradley (arxiv.org)

This is a collection of introductory, expository notes on applied category theory, inspired by the 2018 Applied Category Theory Workshop, and in these notes we take a leisurely stroll through two themes (functorial semantics and compositionality), two constructions (monoidal categories and decorated cospans) and two examples (chemical reaction networks and natural language processing) within the field. [PDF]

hat tip:

See also Notes on Applied Category Theory

Syndicated copies to:

🔖 Temporal Type Theory: A topos-theoretic approach to systems and behavior | ArXiv

Bookmarked [1710.10258] Temporal Type Theory: A topos-theoretic approach to systems and behavior by Patrick Schultz, David I. Spivak (arxiv.org)
This book introduces a temporal type theory, the first of its kind as far as we know. It is based on a standard core, and as such it can be formalized in a proof assistant such as Coq or Lean by adding a number of axioms. Well-known temporal logics---such as Linear and Metric Temporal Logic (LTL and MTL)---embed within the logic of temporal type theory. The types in this theory represent "behavior types". The language is rich enough to allow one to define arbitrary hybrid dynamical systems, which are mixtures of continuous dynamics---e.g. as described by a differential equation---and discrete jumps. In particular, the derivative of a continuous real-valued function is internally defined. We construct a semantics for the temporal type theory in the topos of sheaves on a translation-invariant quotient of the standard interval domain. In fact, domain theory plays a recurring role in both the semantics and the type theory.

hat tip:

Syndicated copies to:

Following Ilyas Khan

Followed Ilyas Khan (LinkedIn)
Ilyas Khan Co-Founder and CEO at Cambridge Quantum Computing

Dear god, I wish Ilyas had a traditional blog with a true feed, but I’m willing to put up with the inconvenience of manually looking him up from time to time to see what he’s writing about quantum mechanics, quantum computing, category theory, and other areas of math.

Reply to A (very) gentle comment on Algebraic Geometry for the faint-hearted | Ilyas Khan

Replied to A (very) gentle comment on Algebraic Geometry for the faint-hearted by Ilyas KhanIlyas Khan (LinkedIn)
This short article is the result of various conversations over the course of the past year or so that arose on the back of two articles/blog pieces that I have previously written about Category Theory (here and here). One of my objectives with such articles, whether they be on aspects of quantum computing or about aspects of maths, is to try and de-mystify as much of the associated jargon as possible, and bring some of the stunning beauty and wonder of the subject to as wide an audience as possible. Whilst it is clearly not possible to become an expert overnight, and it is certainly not my objective to try and provide more than an introduction (hopefully stimulating further research and study), I remain convinced that with a little effort, non-specialists and even self confessed math-phobes can grasp some of the core concepts. In the case of my articles on Category Theory, I felt that even if I could generate one small gasp of excited comprehension where there was previously only confusion, then the articles were worth writing.

I just finished a course on Algebraic Geometry through UCLA Extension, which was geared toward non-traditional math students and professionals, and wish I had known about Smith’s textbook when I’d started. I did spend some time with Cox, Little, and O’Shea’s Ideals, Varieties, and Algorithms which is a pretty good introduction to the area, but written a bit more for computer scientists and engineers in mind rather than the pure mathematician, which might recommend it more toward your audience here as well. It’s certainly more accessible than Hartshorne for the faint-of-heart.

I’ve enjoyed your prior articles on category theory which have spurred me to delve deeper into the area. For others who are interested, I thought I’d also mention that physicist and information theorist John Carlos Baez at UCR has recently started an applied category theory online course which I suspect is a bit more accessible than most of the higher graduate level texts and courses currently out. For more details, I’d suggest starting here: https://johncarlosbaez.wordpress.com/2018/03/26/seven-sketches-in-compositionality/

Syndicated copies to:

🔖 [1803.05316] Seven Sketches in Compositionality: An Invitation to Applied Category Theory

Bookmarked Seven Sketches in Compositionality: An Invitation to Applied Category Theory by Brendan Fong, David I. Spivak (arxiv.org)
This book is an invitation to discover advanced topics in category theory through concrete, real-world examples. It aims to give a tour: a gentle, quick introduction to guide later exploration. The tour takes place over seven sketches, each pairing an evocative application, such as databases, electric circuits, or dynamical systems, with the exploration of a categorical structure, such as adjoint functors, enriched categories, or toposes. No prior knowledge of category theory is assumed. [.pdf]

This is the textbook that John Carlos Baez is going to use for his online course in Applied Category Theory.

Syndicated copies to:

👓 Applied Category Theory – Online Course | John Carlos Baez

Some awesome news just as I’ve wrapped up a class on Algebraic Geometry and was actively looking to delve into some category theory over the summer. John Carlos Baez announced that he’s going to offer an online course in applied category theory. He’s also already posted some videos and details!

Syndicated copies to:

📺 Proving Brouwer’s Fixed Point Theorem | PBS Infinite Series on YouTube

Watched Proving Brouwer's Fixed Point Theorem by Tai-Danae Bradley from PBS Infinite Series | YouTube
There is a proof for Brouwer's Fixed Point Theorem that uses a bridge - or portal - between geometry and algebra. Analogous to the relationship between geometry and algebra, there is a mathematical “portal” from a looser version of geometry -- topology -- to a more “sophisticated” version of algebra. This portal can take problems that are very difficult to solve topologically, and recast them in an algebraic light, where the answers may become easier. Written and Hosted by Tai-Danae Bradley; Produced by Rusty Ward; Graphics by Ray Lux; Assistant Editing and Sound Design by Mike Petrow and Meah Denee Barrington; Made by Kornhaber Brown (www.kornhaberbrown.com)

I had originally started following Tai-Danae Bradley on Instagram having found her account via the #math tag. Turns out she’s burning up the world explaining some incredibly deep and complex mathematics in relatively simple terms. If you’re into math and not following her work already, get with the program. She’s awesome!

Personal Website: http://www.math3ma.com/
Twitter: @math3ma
Instagram: @math3ma
YouTube series: PBS Infinite Series

While this particular video leaves out a masters degree’s worth of detail, it does show some incredibly powerful mathematics by analogy. The overall presentation and descriptions are quite solid for leaving out as much as they do. This may be some of the best math-based science communication I’ve seen in quite a while.

I must say that I have to love and laugh at the depth and breadth of the comments on the video too. At best, this particular video, which seems to me to be geared toward high school or early college viewers and math generalists, aims to introduce come general topics and outline an incredibly complex proof in under 9 minutes. People are taking it to task for omitting “too much”! To completely understand and encapsulate the entirety of the topics at hand one would need coursework including a year’s worth of algebra, a year’s worth of topology including some algebraic topology, and a minimum of a few months worth of category theory. Even with all of these, to fill in all the particular details, I could easily see a professor spending an hour at the chalkboard filling in the remainder without any significant handwaving. The beauty of what she’s done is to give a very motivating high level perspective on the topic to get people more interested in these areas and what can be done with them. For the spirit of the piece, one might take her to task a bit for not giving more credit to the role Category Theory is playing in the picture, but then anyone interested is going to spend some time on her blog to fill in a lot of those holes. I’d challenge any of the comments out there to attempt to do what she’s done in under 9 minutes and do it better.

Syndicated copies to:

📗 Read pages i-14 of The Theoretical Minimum: What You Need to Know to Start Doing Physics by Leonard Susskind and George Hrabovsky

📖 Read pages i-14 of The Theoretical Minimum: What You Need to Know to Start Doing Physics by Leonard Susskind and George Hrabovsky (Basic Books, , ISBN: 978-0465028115)

I’d read a portion of this in the past, but thought I’d circle back to it when I saw it sitting on the shelf at the library before the holidays. It naturally helps to have had lots of physics in the past, but this has a phenomenally clear and crisp presentation of just the basics in a way that is seldom if ever seen in actual physics textbooks.

Highlights, Quotes, & Marginalia

Lecture One: The Nature of Classical Physics

There is a very simple rule to tell when a diagram represents a deterministic reversible law. If every state has a single unique arrow leading into it, and a single arrow leading out of it, then it is a legal deterministic reversible law.

Highlight (yellow) – 1. The Nature of Classical Physics > Page 9

There’s naturally a much more sophisticated and subtle mathematical way of saying this. I feel like I’ve been constantly tempted to go back and look at more category theory, and this may be yet another motivator.
Added on Wednesday, January 4, 2018 late evening

The rule that dynamical laws must be deterministic and reversible is so central to classical physics that we sometimes forget to mention it when teaching the subject. […] minus-first law [: …] undoubtedly the most fundamental of all physics laws–the conservation of information. The conservation of information is simply the rule that every state has one arrow in and one arrow out. It ensures that you never lose track of where you started.

Highlight (yellow) – 1. The Nature of Classical Physics > Page 9-10

This is very simply and naturally stated, but holds a lot of complexity. Again I’d like to come back and do some serious formalization of this and reframe it in a category theory frameork.
Added on Wednesday, January 4, 2018 late evening

There is evan a zeroth law […]

Highlight (gray) – 1. The Nature of Classical Physics > Page 9

spelling should be even; I’m also noticing a lot of subtle typesetting issues within the physical production of the book that are driving me a bit crazy. Spaces where they don’t belong or text not having clear margins at the tops/bottoms of pages. I suspect the math and layout of diagrams and boxes in the text caused a lot of problems in their usual production flow.
Added on Wednesday, January 4, 2018 late evening

Guide to highlight colors

Yellow–general highlights and highlights which don’t fit under another category below
Orange–Vocabulary word; interesting and/or rare word
Green–Reference to read
Blue–Interesting Quote
Gray–Typography Problem
Red–Example to work through

Syndicated copies to:

Reply to Jeremy Kun on Twitter

Replied to A post on Twitter by Jeremy KunJeremy Kun (Twitter)
Sub things and glue things and red things and blue things! https://twitter.com/math3ma/status/948290058930581505

This one has a little star.

This one has a little car. Say, what a lot of categories there are!

Syndicated copies to:

👓 Limits and Colimits, Part 1 (Introduction) | Math3ma

Read Limits and Colimits, Part 1 (Introduction) by Tai-Danae BradleyTai-Danae Bradley (Math3ma)
I'd like to embark on yet another mini-series here on the blog. The topic this time? Limits and colimits in category theory! But even if you're not familiar with category theory, I do hope you'll keep reading. Today's post is just an informal, non-technical introduction. And regardless of your categorical background, you've certainly come across many examples of limits and colimits, perhaps without knowing it! They appear everywhere - in topology, set theory, group theory, ring theory, linear algebra, differential geometry, number theory, algebraic geometry. The list goes on. But before diving in, I'd like to start off by answering a few basic questions.

A great little introduction to category theory! Can’t wait to see what the future installments bring.

Interestingly I came across this on Instagram. It may be one of the first times I’ve seen math at this level explained in pictorial form via Instagram.

View this post on Instagram

Given a bunch of sets, what are some ways to construct a new set? Some options include: intersections, unions, Cartesian products, preimages, and quotients. And these are all examples of “limits and colimits” in #categorytheory! Notice how the examples come in two flavors? An intersection, a preimage, a product are all formed by picking out a sub-collection of elements from given sets, contingent on some condition. These are examples of limits. On the other hand, unions and quotients are formed by assembling or 'gluing' things together. These are examples of colimits. . In practice, limits tend to have a "sub-thing" feel to them, whereas colimits tend to have a "glue-y" feel to them. And these constructions are two of the most frequent ways that mathematicians build things, so they appear ALL over mathematics. But what are (co)limits, exactly? I’ve just posted a non-technical introduction on my blog. It’s Part 1 of the latest mini-series on Math3ma. Link in profile!

A post shared by Tai-Danae Bradley (@math3ma) on

Syndicated copies to:

🔖 Adjoint School, ACT 2018 (Applied Category Theory)

Bookmarked Adjoint School, ACT 2018 (Applied Category Theory)
The Workshop on Applied Category Theory 2018 takes place in May 2018. A principal goal of this workshop is to bring early career researchers into the applied category theory community. Towards this goal, we are organising the Adjoint School. The Adjoint School will run from January to April 2018.

There’s still some time left to apply. And if nothing else, this looks like it’s got some interesting resources.

h/t John Carlos Baez

Applied Category Theory

Syndicated copies to:

Basic Category Theory by Tom Leinster | Free Ebook Download

Bookmarked Basic Category Theory (arxiv.org)
This short introduction to category theory is for readers with relatively little mathematical background. At its heart is the concept of a universal property, important throughout mathematics. After a chapter introducing the basic definitions, separate chapters present three ways of expressing universal properties: via adjoint functors, representable functors, and limits. A final chapter ties the three together. For each new categorical concept, a generous supply of examples is provided, taken from different parts of mathematics. At points where the leap in abstraction is particularly great (such as the Yoneda lemma), the reader will find careful and extensive explanations.

Tom Leinster has released a digital e-book copy of his textbook Basic Category Theory on arXiv [1]

h/t to John Carlos Baez for the notice:

My friend Tom Leinster has written a great introduction to that wonderful branch of math called category theory! It’s free:

https://arxiv.org/abs/1612.09375

It starts with the basics and it leads up to a trio of related concepts, which are all ways of talking about universal properties.

Huh? What’s a ‘universal property’?

In category theory, we try to describe things by saying what they do, not what they’re made of. The reason is that you can often make things out of different ingredients that still do the same thing! And then, even though they will not be strictly the same, they will be isomorphic: the same in what they do.

A universal property amounts to a precise description of what an object does.

Universal properties show up in three closely connected ways in category theory, and Tom’s book explains these in detail:

through representable functors (which are how you actually hand someone a universal property),

through limits (which are ways of building a new object out of a bunch of old ones),

through adjoint functors (which give ways to ‘freely’ build an object in one category starting from an object in another).

If you want to see this vague wordy mush here transformed into precise, crystalline beauty, read Tom’s book! It’s not easy to learn this stuff – but it’s good for your brain. It literally rewires your neurons.

Here’s what he wrote, over on the category theory mailing list:

…………………………………………………………………..

Dear all,

My introductory textbook “Basic Category Theory” was published by Cambridge University Press in 2014. By arrangement with them, it’s now also free online:

https://arxiv.org/abs/1612.09375

It’s also freely editable, under a Creative Commons licence. For instance, if you want to teach a class from it but some of the examples aren’t suitable, you can delete them or add your own. Or if you don’t like the notation (and when have two category theorists ever agreed on that?), you can easily change the Latex macros. Just go the arXiv, download, and edit to your heart’s content.

There are lots of good introductions to category theory out there. The particular features of this one are:
• It’s short.
• It doesn’t assume much.
• It sticks to the basics.

 

References

[1]
T. Leinster, Basic Category Theory, 1st ed. Cambridge University Press, 2014.
Syndicated copies to: