Category theory is unmatched in its ability to organize and layer abstractions and to find commonalities between structures of all sorts. No longer the exclusive preserve of pure mathematicians, it is now proving itself to be a powerful tool in science, informatics, and industry. By facilitating communication between communities and building rigorous bridges between disparate worlds, applied category theory has the potential to be a major organizing force. This book offers a self-contained tour of applied category theory. Each chapter follows a single thread motivated by a real-world application and discussed with category-theoretic tools. We see data migration as an adjoint functor, electrical circuits in terms of monoidal categories and operads, and collaborative design via enriched profunctors. All the relevant category theory, from simple to sophisticated, is introduced in an accessible way with many examples and exercises, making this an ideal guide even for those without experience of university-level mathematics.

This thesis takes inspiration from quantum physics to investigate mathematical structure that lies at the interface of algebra and statistics. The starting point is a passage from classical probability theory to quantum probability theory. The quantum version of a probability distribution is a density operator, the quantum version of marginalizing is an operation called the partial trace, and the quantum version of a marginal probability distribution is a reduced density operator. Every joint probability distribution on a finite set can be modeled as a rank one density operator. By applying the partial trace, we obtain reduced density operators whose diagonals recover classical marginal probabilities. In general, these reduced densities will have rank higher than one, and their eigenvalues and eigenvectors will contain extra information that encodes subsystem interactions governed by statistics. We decode this information, and show it is akin to conditional probability, and then investigate the extent to which the eigenvectors capture "concepts" inherent in the original joint distribution. The theory is then illustrated with an experiment that exploits these ideas. Turning to a more theoretical application, we also discuss a preliminary framework for modeling entailment and concept hierarchy in natural language, namely, by representing expressions in the language as densities. Finally, initial inspiration for this thesis comes from formal concept analysis, which finds many striking parallels with the linear algebra. The parallels are not coincidental, and a common blueprint is found in category theory. We close with an exposition on free (co)completions and how the free-forgetful adjunctions in which they arise strongly suggest that in certain categorical contexts, the "fixed points" of a morphism with its adjoint encode interesting information.

An introduction to category theory as a rigorous, flexible, and coherent modeling language that can be used across the sciences.

Category theory was invented in the 1940s to unify and synthesize different areas in mathematics, and it has proven remarkably successful in enabling powerful communication between disparate fields and subfields within mathematics. This book shows that category theory can be useful outside of mathematics as a rigorous, flexible, and coherent modeling language throughout the sciences. Information is inherently dynamic; the same ideas can be organized and reorganized in countless ways, and the ability to translate between such organizational structures is becoming increasingly important in the sciences. Category theory offers a unifying framework for information modeling that can facilitate the translation of knowledge between disciplines.

Written in an engaging and straightforward style, and assuming little background in mathematics, the book is rigorous but accessible to non-mathematicians. Using databases as an entry to category theory, it begins with sets and functions, then introduces the reader to notions that are fundamental in mathematics: monoids, groups, orders, and graphs―categories in disguise. After explaining the “big three” concepts of category theory―categories, functors, and natural transformations―the book covers other topics, including limits, colimits, functor categories, sheaves, monads, and operads. The book explains category theory by examples and exercises rather than focusing on theorems and proofs. It includes more than 300 exercises, with solutions.

Category Theory for the Sciences is intended to create a bridge between the vast array of mathematical concepts used by mathematicians and the models and frameworks of such scientific disciplines as computation, neuroscience, and physics.

We’re going to have a seminar on applied category theory here at U. C. Riverside! My students have been thinking hard about category theory for a few years, but they’ve decided it’s time to get deeper into applications. Christian Williams, in particular, seems to have caught my zeal for trying to develop new math to help save the planet.

We’ll try to videotape the talks to make it easier for you to follow along. I’ll also start discussions here and/or on the Azimuth Forum. It’ll work best if you read the papers we’re talking about and then join these discussions. Ask questions, and answer any questions you can!

Some initial discussion of sets, classes, and conglomerates to keep us out of trouble with some of the potential foundational issues that can be found in set theory.

Highlights, Quotes, Annotations, & Marginalia

completions of partially orderedsets and of metric spaces,ˇCech-Stone compactifications of topological spaces, sym-metrizations of relations, abelianizations of groups, Bohr compactifications of topo-logical groups, minimalizations of reachable acceptors, etc. ❧

The tough part of category theory is lists of things like this right up front which will tend to scare off almost any reader but those who are working on Ph.D.s in mathematics… November 30, 2018 at 09:29PM

This up-to-date introductory treatment employs the language of category theory to explore the theory of structures. Its unique approach stresses concrete categories, and each categorical notion features several examples that clearly illustrate specific and general cases.

A systematic view of factorization structures, this volume contains seven chapters. The first five focus on basic theory, and the final two explore more recent research results in the realm of concrete categories, cartesian closed categories, and quasitopoi. Suitable for advanced undergraduate and graduate students, it requires an elementary knowledge of set theory and can be used as a reference as well as a text. Updated by the authors in 2004, it offers a unifying perspective on earlier work and summarizes recent developments.

Wikipedia enforces its entries to adopt an NPOV – a neutral point of view . This is appropriate for an encyclopedia.

However, the nLab is not Wikipedia, nor is it an encyclopedia, although it does aspire to provide a useful reference in many areas (among its other purposes). In particular, the nLab has a particular point of view, which we may call the nPOV or the n- categorical point of view .

To some extent the nPOV is just the observation that category theory and higher category theory, hence in particular of homotopy theory, have a plethora of useful applications.

Wikipedia enforces its entries to adopt an NPOV – a neutral point of view . This is appropriate for an encyclopedia.

However, the nLab is not Wikipedia, nor is it an encyclopedia, although it does aspire to provide a useful reference in many areas (among its other purposes). In particular, the nnLab has a particular point of view, which we may call the nnPOV or the n-categorical point of view .

This up-to-date introductory treatment employs the language of category theory to explore the theory of structures. Its unique approach stresses concrete categories, and each categorical notion features several examples that clearly illustrate specific and general cases.
A systematic view of factorization structures, this volume contains seven chapters. The first five focus on basic theory, and the final two explore more recent research results in the realm of concrete categories, cartesian closed categories, and quasitopoi. Suitable for advanced undergraduate and graduate students, it requires an elementary knowledge of set theory and can be used as a reference as well as a text. Updated by the authors in 2004, it offers a unifying perspective on earlier work and summarizes recent developments.

Mike Miller has announced in class that he’ll be using Abstract and Concrete Categories: The Joy of Cats as the textbook for his upcoming Introduction to Category Theory course at UCLA Extension this winter.

Naturally, he’ll be supplementing it heavily with his own notes.

A free .pdf copy of the text is also available online.

Here are the notes from a basic course on category theory. Unlike the Fall 2015 seminar, this tries to be a systematic introduction to the subject. A good followup to this course is my Fall 2018 course.
If you discover any errors in the notes please email me, and I'll add them to the list of errors.
You can get all 10 weeks of notes in a single file here:

I’m teaching a course on category theory at U.C. Riverside, and since my website is still suffering from reduced functionality I’ll put the course notes here for now. I taught an introductory course on category theory in 2016, but this one is a bit more advanced.
The hand-written notes here are by Christian Williams. They are probably best seen as a reminder to myself as to what I’d like to include in a short book someday.

This course is an introduction to the basic tenets of category theory, as formulated and illustrated through examples drawn from algebra, calculus, geometry, set theory, topology, number theory, and linear algebra.

Category theory, since its development in the 1940s, has assumed an increasingly center-stage role in formalizing mathematics and providing tools to diverse scientific disciplines, most notably computer science. A category is fundamentally a family of mathematical obejcts (e.g., numbers, vector spaces, groups, topological spaces) along with “mappings” (so-called morphisms) between these objects that, in some defined sense, preserve structure. Taking it one step further, one can consider morphisms (so-called functors) between categories. This course is an introduction to the basic tenets of category theory, as formulated and illustrated through examples drawn from algebra, calculus, geometry, set theory, topology, number theory, and linear algebra. Topics to be discussed include: isomorphism; products and coproducts; dual categories; covariant, contravariant, and adjoint functors; abelian and additive categories; and the Yoneda Lemma. The course should appeal to devotees of mathematical reasoning, computer scientists, and those wishing to gain basic insights into a hot area of mathematics.

January 8, 2019 - March 19, 2019
Tuesday 7:00PM - 10:00PM
Location: UCLA
Instructor: Michael Miller
Fee: $453.00

The new catalog is out today and Mike Miller’s Winter class in Category Theory has been officially announced.

Oddly, it wasn’t listed in the published physical catalog, but it’s available online. I hope that those interested in mathematics will register as well as those who are interested in computer science.

Last night was the first lecture of Dr. Miller’s Gems And Astonishments of Mathematics: Past and Present class at UCLA Extension. There are a good 15 or so people in the class, so there’s still room (and time) to register if you’re interested. While Dr. Miller typically lectures on one broad topic for a quarter (or sometimes two) in which the treatment continually builds heavy complexity over time, this class will cover 1-2 much smaller particular mathematical problems each week. Thus week 11 won’t rely on knowing all the material from the prior weeks, which may make things easier for some who are overly busy. If you have the time on Tuesday nights and are interested in math or love solving problems, this is an excellent class to consider. If you’re unsure, stop by one of the first lectures on Tuesday nights from 7-10 to check them out before registering.

Lecture notes

For those who may have missed last night’s first lecture, I’m linking to a Livescribe PDF document which includes the written notes as well as the accompanying audio from the lecture. If you view it in Acrobat Reader version X (or higher), you should be able to access the audio portion of the lecture and experience it in real time almost as if you had been present in person. (Instructions for using Livescribe PDF documents.)

We’ve covered the following topics:

Class Introduction

Erdős Discrepancy Problem

n-cubes

Hilbert’s Cube Lemma (1892)

Schur (1916)

Van der Waerden (1927)

Sylvester’s Line Problem (partial coverage to be finished in the next lecture)

Over the coming days and months, I’ll likely bookmark some related papers and research on these and other topics in the class using the class identifier MATHX451.44 as a tag in addition to topic specific tags.

Course Description

Mathematics has evolved over the centuries not only by building on the work of past generations, but also through unforeseen discoveries or conjectures that continue to tantalize, bewilder, and engage academics and the public alike. This course, the first in a two-quarter sequence, is a survey of about two dozen problems—some dating back 400 years, but all readily stated and understood—that either remain unsolved or have been settled in fairly recent times. Each of them, aside from presenting its own intrigue, has led to the development of novel mathematical approaches to problem solving. Topics to be discussed include (Google away!): Conway’s Look and Say Sequences, Kepler’s Conjecture, Szilassi’s Polyhedron, the ABC Conjecture, Benford’s Law, Hadamard’s Conjecture, Parrondo’s Paradox, and the Collatz Conjecture. The course should appeal to devotees of mathematical reasoning and those wishing to keep abreast of recent and continuing mathematical developments.

Suggested Prerequisites

Some exposure to advanced mathematical methods, particularly those pertaining to number theory and matrix theory. Most in the class are taking the course for “fun” and the enjoyment of learning, so there is a huge breadth of mathematical abilities represented–don’t not take the course because you feel you’ll get lost.

I’d complained to the UCLA administration before about how dirty the windows were in the Math Sciences Building, but they went even further than I expected in fixing the problem. Not only did they clean the windows they put in new flooring, brand new modern chairs, wood paneling on the walls, new projection, and new white boards! I particularly love the new swivel chairs, and it’s nice to have such a lovely new environment in which to study math.

Category Theory for Winter 2019

As I mentioned the other day, Dr. Miller has also announced (and reiterated last night) that he’ll be teaching a course on the topic of Category Theory for the Winter quarter coming up. Thus if you’re interested in abstract mathematics or areas of computer programming that use it, start getting ready!