*(Twitter)*

There's no need to go out tonight for a movie. There are 100s of math videos on every conceivable 'math' topic' at --> https://www.pinterest.com/mathematicsprof/

Skip to content
# Tag: video lectures

Reposted math prof on Twitter* (Twitter)*
## Video lectures for Algebraic Geometry

## 🔖 Statistical Mechanics, Spring 2016 (Caltech, Physics 12c with videos) by John Preskill

Bookmarked Statistical Mechanics, Spring 2016 (Physics 12c) by *(Caltech)*
## Introduction to Information Theory | SFI’s Complexity Explorer

There's no need to go out tonight for a movie. There are 100s of math videos on every conceivable 'math' topic' at --> https://www.pinterest.com/mathematicsprof/

I originally made this compilation on May 31, 2016 to share with some friends and never got around to posting it. Now that I’m actually ## A List of video lectures for Algebraic Geometry

, I thought I’d dust it off and finally publish it for those who are interested.
If you’re aware of things I’ve missed, or which have appeared since, please do let me know in the comments.

- Harpreet Bedi (YouTube) 68 lectures (Note: His website also has some other good lectures on Galois Theory and Algebraic Topology)
- Miles Reed(How to Download Miles Reid’s Algebraic Geometry videos)
- Basic Algebraic Geometry: Varieties, Morphisms, Local Rings, Function Fields and Nonsingularity (NPTEL)
- Algebraic geometry for physicists by Ugo Bruzzo
- Lectures on Algebraic Geometry by L. Goettsche (ICTP)
- Talks given at the AMS Summer Institute in Algebraic Geometry (2015)
- Classical Algebraic Geometry Today (MSRI Workshop 2009)
- Lectures by Harris, Hartshorne, Maclagan, and Beelen at ELGA2011

Some other places with additional (sometimes overlapping resources), particularly for more advanced/less introductory lectures:

- Video Lectures for Algebraic Geometry (MathOverflow)
- Sites to Learn Algebraic Geometry (MathOverflow)
- Video lectures of Algebraic Geometry-Hartshorne-Shafarevich (MathOverflow)

An introductory course in statistical mechanics.

Recommended textbook *Thermal Physics* by Charles Kittel and Herbert Kroemer

There’s also a corresponding video lecture series available on YouTube

https://www.youtube.com/playlist?list=PL0ojjrEqIyPzgJUUW76koGcSCy6OGtDRI

Many readers often ask me for resources for delving into the basics of information theory. I hadn’t posted it before, but the Santa Fe Institute recently had an online course *Introduction to Information Theory* through their Complexity Explorer, which has some other excellent offerings. It included videos, fora, and other resources and was taught by the esteemed physicist and professor Seth Lloyd. There are a number of currently active students still learning and posting there.

## Introduction to Information Theory

## About the Tutorial:

This tutorial introduces fundamental concepts in information theory. Information theory has made considerable impact in complex systems, and has in part co-evolved with complexity science. Research areas ranging from ecology and biology to aerospace and information technology have all seen benefits from the growth of information theory.

In this tutorial, students will follow the development of information theory from bits to modern application in computing and communication. Along the way Seth Lloyd introduces valuable topics in information theory such as mutual information, boolean logic, channel capacity, and the natural relationship between information and entropy.

Lloyd coherently covers a substantial amount of material while limiting discussion of the mathematics involved. When formulas or derivations are considered, Lloyd describes the mathematics such that less advanced math students will find the tutorial accessible. Prerequisites for this tutorial are an understanding of logarithms, and at least a year of high-school algebra.

## About the Instructor(s):

Professor Seth Lloyd is a principal investigator in the Research Laboratory of Electronics (RLE) at the Massachusetts Institute of Technology (MIT). He received his A.B. from Harvard College in 1982, the Certificate of Advanced Study in Mathematics (Part III) and an M. Phil. in Philosophy of Science from Cambridge University in 1983 and 1984 under a Marshall Fellowship, and a Ph.D. in Physics in 1988 from Rockefeller University under the supervision of Professor Heinz Pagels.

From 1988 to 1991, Professor Lloyd was a postdoctoral fellow in the High Energy Physics Department at the California Institute of Technology, where he worked with Professor Murray Gell-Mann on applications of information to quantum-mechanical systems. From 1991 to 1994, he was a postdoctoral fellow at Los Alamos National Laboratory, where he worked at the Center for Nonlinear Systems on quantum computation. In 1994, he joined the faculty of the Department of Mechanical Engineering at MIT. Since 1988, Professor Lloyd has also been an adjunct faculty member at the Sante Fe Institute.

Professor Lloyd has performed seminal work in the fields of quantum computation and quantum communications, including proposing the first technologically feasible design for a quantum computer, demonstrating the viability of quantum analog computation, proving quantum analogs of Shannon’s noisy channel theorem, and designing novel methods for quantum error correction and noise reduction.

Professor Lloyd is a member of the American Physical Society and the Amercian Society of Mechanical Engineers.

## Tutorial Team:

Yoav Kallus is an Omidyar Fellow at the Santa Fe Institute. His research at the boundary of statistical physics and geometry looks at how and when simple interactions lead to the formation of complex order in materials and when preferred local order leads to system-wide disorder. Yoav holds a B.Sc. in physics from Rice University and a Ph.D. in physics from Cornell University. Before joining the Santa Fe Institute, Yoav was a postdoctoral fellow at the Princeton Center for Theoretical Science in Princeton University.

How to use Complexity Explorer: How to use Complexity Explore

Prerequisites: At least one year of high-school algebra

Like this tutorial? Donate to help fund more like it

## Syllabus

- Introduction
- Forms of Information
- Information and Probability
- Fundamental Formula of Information
- Computation and Logic: Information Processing
- Mutual Information
- Communication Capacity
- Shannon’s Coding Theorem
- The Manifold Things Information Measures
- Homework