👓 AI Is Making It Extremely Easy for Students to Cheat | WIRED

Read AI Is Making It Extremely Easy for Students to Cheat (WIRED)
Teachers are being forced to adapt to new tools that execute homework perfectly.

The headline is a bit click-baity, but the article is pretty solid nonetheless.

There is some interesting discussion in here on how digital technology meets pedagogy. We definitely need to think about how we reframe what is happening here. I’m a bit surprised they didn’t look back at the history of the acceptance (or not) of the calculator in math classes from the 60’s onward.

Where it comes to math, some of these tools can be quite useful, but students need to have the correct and incorrect uses of these technologies explained and modeled for them. Rote cheating certainly isn’t going to help them, but if used as a general tutorial of how and why methods work, then it can be invaluable and allow them to jump much further ahead of where they might otherwise be.

I’m reminded of having told many in the past that the general concepts behind the subject of calculus are actually quite simple and relatively easy to master. The typical issue is that students in these classes may be able to do the first step of the problem which is the actual calculus, but get hung up on not having practiced the algebra enough and the 10 steps of algebra after the first step of calculus is where their stumbling block lies in getting the correct answer.

👓 The Cube Rule of Food Identification

Read The Cube Rule of Food Identification (cuberule.com)
The grand unified theory of food identification

The way this article abstracts food is very similar to the ways mathematicians think about objects and concepts of mathematics.

👓 Limits and Colimits, Part 1 (Introduction) | Math3ma

Read Limits and Colimits, Part 1 (Introduction) by Tai-Danae BradleyTai-Danae Bradley (Math3ma)
I'd like to embark on yet another mini-series here on the blog. The topic this time? Limits and colimits in category theory! But even if you're not familiar with category theory, I do hope you'll keep reading. Today's post is just an informal, non-technical introduction. And regardless of your categorical background, you've certainly come across many examples of limits and colimits, perhaps without knowing it! They appear everywhere - in topology, set theory, group theory, ring theory, linear algebra, differential geometry, number theory, algebraic geometry. The list goes on. But before diving in, I'd like to start off by answering a few basic questions.

A great little introduction to category theory! Can’t wait to see what the future installments bring.

Interestingly I came across this on Instagram. It may be one of the first times I’ve seen math at this level explained in pictorial form via Instagram.

View this post on Instagram

Given a bunch of sets, what are some ways to construct a new set? Some options include: intersections, unions, Cartesian products, preimages, and quotients. And these are all examples of “limits and colimits” in #categorytheory! Notice how the examples come in two flavors? An intersection, a preimage, a product are all formed by picking out a sub-collection of elements from given sets, contingent on some condition. These are examples of limits. On the other hand, unions and quotients are formed by assembling or 'gluing' things together. These are examples of colimits. . In practice, limits tend to have a "sub-thing" feel to them, whereas colimits tend to have a "glue-y" feel to them. And these constructions are two of the most frequent ways that mathematicians build things, so they appear ALL over mathematics. But what are (co)limits, exactly? I’ve just posted a non-technical introduction on my blog. It’s Part 1 of the latest mini-series on Math3ma. Link in profile!

A post shared by Tai-Danae Bradley (@math3ma) on

I’m a sucker for references to math and pastry

Math is about understanding processes and not just eating end results.

W

hat can I say? I’m a sucker for references to math and pastry.

 

“One of the wonderful features of math is that, like with pastry, it can use quite simple ingredients to make very complicated situations. This can also make it rather offputting, like making puff pastry. Actually, I don’t think puff pastry is that difficult if you follow the instructions carefully. But even if you don’t want to try doing it yourself, perhaps you can still enjoy the fact that such simple ingredients can turn into delicious puff pastry. Math is about understanding processes and not just eating end results.”

Eugenia Cheng, mathematician, amateur chef
in How to Bake Pi: An Edible Exploration of the Mathematics of Mathematics (Basic Books, 2015)
 
How to Bake Pi
How to Bake Pi