🔖 Emergence of Scaling in Random Networks by Albert-Laszlo Barabasi and Reka Albert | Science

Bookmarked Emergence of Scaling in Random Networks by Albert-László Barabási, Réka Albert (Science)
Systems as diverse as genetic networks or the World Wide Web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a scale-free power-law distribution. This feature was found to be a consequence of two generic mechanisms: (i) networks expand continuously by the addition of new vertices, and (ii) new vertices attach preferentially to sites that are already well connected. A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.

h/t Disconnected, fragmented, or united? a trans-disciplinary review of network science by César A. Hidalgo (Applied Network Science | SpringerLink)

Syndicated copies to:

🔖 Information theory, predictability, and the emergence of complex life

Bookmarked Information theory, predictability, and the emergence of complex life (arxiv.org)
Abstract: Despite the obvious advantage of simple life forms capable of fast replication, different levels of cognitive complexity have been achieved by living systems in terms of their potential to cope with environmental uncertainty. Against the inevitable cost associated to detecting environmental cues and responding to them in adaptive ways, we conjecture that the potential for predicting the environment can overcome the expenses associated to maintaining costly, complex structures. We present a minimal formal model grounded in information theory and selection, in which successive generations of agents are mapped into transmitters and receivers of a coded message. Our agents are guessing machines and their capacity to deal with environments of different complexity defines the conditions to sustain more complex agents.
Syndicated copies to:

Forthcoming ITBio-related book from Sean Carroll: “The Big Picture: On the Origins of Life, Meaning, and the Universe Itself”

Physicist Sean Carroll has a forthcoming book entitled The Big Picture: On the Origins of Life, Meaning, and the Universe Itself (Dutton, May 10, 2016) that will be of interest to many of our readers.

In catching up on blogs/reading from the holidays, I’ve noticed that physicist Sean Carroll has a forthcoming book entitled The Big Picture: On the Origins of Life, Meaning, and the Universe Itself (Dutton, May 10, 2016) that will be of interest to many of our readers. One can already pre-order the book via Amazon.

Prior to the holidays Sean wrote a blogpost that contains a full overview table of contents, which will give everyone a stronger idea of its contents. For convenience I’ll excerpt it below.

I’ll post a review as soon as a copy arrives, but it looks like a strong new entry in the category of popular science books on information theory, biology and complexity as well as potentially the areas of evolution, the origin of life, and physics in general.

As a side bonus, for those reading this today (1/15/16), I’ll note that Carroll’s 12 part lecture series from The Great Courses The Higgs Boson and Beyond (The Learning Company, February 2015) is 80% off.

The Big Picture

 

THE BIG PICTURE: ON THE ORIGINS OF LIFE, MEANING, AND THE UNIVERSE ITSELF

0. Prologue

* Part One: Cosmos

  • 1. The Fundamental Nature of Reality
  • 2. Poetic Naturalism
  • 3. The World Moves By Itself
  • 4. What Determines What Will Happen Next?
  • 5. Reasons Why
  • 6. Our Universe
  • 7. Time’s Arrow
  • 8. Memories and Causes

* Part Two: Understanding

  • 9. Learning About the World
  • 10. Updating Our Knowledge
  • 11. Is It Okay to Doubt Everything?
  • 12. Reality Emerges
  • 13. What Exists, and What Is Illusion?
  • 14. Planets of Belief
  • 15. Accepting Uncertainty
  • 16. What Can We Know About the Universe Without Looking at It?
  • 17. Who Am I?
  • 18. Abducting God

* Part Three: Essence

  • 19. How Much We Know
  • 20. The Quantum Realm
  • 21. Interpreting Quantum Mechanics
  • 22. The Core Theory
  • 23. The Stuff of Which We Are Made
  • 24. The Effective Theory of the Everyday World
  • 25. Why Does the Universe Exist?
  • 26. Body and Soul
  • 27. Death Is the End

* Part Four: Complexity

  • 28. The Universe in a Cup of Coffee
  • 29. Light and Life
  • 30. Funneling Energy
  • 31. Spontaneous Organization
  • 32. The Origin and Purpose of Life
  • 33. Evolution’s Bootstraps
  • 34. Searching Through the Landscape
  • 35. Emergent Purpose
  • 36. Are We the Point?

* Part Five: Thinking

  • 37. Crawling Into Consciousness
  • 38. The Babbling Brain
  • 39. What Thinks?
  • 40. The Hard Problem
  • 41. Zombies and Stories
  • 42. Are Photons Conscious?
  • 43. What Acts on What?
  • 44. Freedom to Choose

* Part Six: Caring

  • 45. Three Billion Heartbeats
  • 46. What Is and What Ought to Be
  • 47. Rules and Consequences
  • 48. Constructing Goodness
  • 49. Listening to the World
  • 50. Existential Therapy
  • Appendix: The Equation Underlying You and Me
  • Acknowledgments
  • Further Reading
  • References
  • Index

Source: Sean Carroll | The Big Picture: Table of Contents

Syndicated copies to:

Nicolas Perony: Puppies! Now that I’ve got your attention, complexity theory | TED

Animal behavior isn't complicated, but it is complex. Nicolas Perony studies how individual animals — be they Scottish Terriers, bats or meerkats — follow simple rules that, collectively, create larger patterns of behavior. And how this complexity born of simplicity can help them adapt to new circumstances, as they arise.

For those who are looking for a good, simple, and entertaining explanation of the concept of emergent properties and behavior within complexity theory (or Big History), I just came across a nice TED talk that simplifies complexity using a few animal examples including a cute puppy video as well as a bat and a meerkat example. The latter two also have implications for evolution and survival which are lovely examples as well.

Syndicated copies to: