An impassioned defense of intellectual freedom and a clarion call to intellectual responsibility, Galileo’s Middle Finger is one American’s eye-opening story of life in the trenches of scientific controversy. For two decades, historian Alice Dreger has led a life of extraordinary engagement, combining activist service to victims of unethical medical research with defense of scientists whose work has outraged identity politics activists. With spirit and wit, Dreger offers in Galileo’s Middle Finger an unforgettable vision of the importance of rigorous truth seeking in today’s America, where both the free press and free scholarly inquiry struggle under dire economic and political threats.
This illuminating chronicle begins with Dreger’s own research into the treatment of people born intersex (once called hermaphrodites). Realization of the shocking surgical and ethical abuses conducted in the name of “normalizing” intersex children’s gender identities moved Dreger to become an internationally recognized patient rights’ activist. But even as the intersex rights movement succeeded, Dreger began to realize how some fellow progressive activists were employing lies and personal attacks to silence scientists whose data revealed uncomfortable truths about humans. In researching one such case, Dreger suddenly became the target of just these kinds of attacks.
Troubled, she decided to try to understand more—to travel the country to ferret out the truth behind various controversies, to obtain a global view of the nature and costs of these battles. Galileo’s Middle Finger describes Dreger’s long and harrowing journeys between the two camps for which she felt equal empathy: social justice activists determined to win and researchers determined to put hard truths before comfort. Ultimately what emerges is a lesson about the intertwining of justice and of truth—and a lesson of the importance of responsible scholars and journalists to our fragile democracy.
Tag: popular science
Jordan Ellenberg don’t know stat | Rick’s Ramblings
There follows a discussion of flipping coins and the fact that frequencies have more random variation when the sample size is small, but he never stops to see if this is enough to explain the observation.
My intuition told me it did not, so I went and got some brain cancer data.
I remember reading that section of the book and mostly breezing through that argument primarily as a simple example with a limited, but direct point. Durrett decided to delve into the applied math a bit further.
These are some of the subtle issues one eventually comes across when experts read others’ works which were primarily written for much broader audiences.
I also can’t help thinking that one paints a target on one’s back with a book title like that…
BTW, the quote of the day has to be:
… so I went and got some brain cancer data.
A New Thermodynamics Theory of the Origin of Life | Quanta Magazine
Jeremy England, a 31-year-old physicist at MIT, thinks he has found the underlying physics driving the origin and evolution of life.
- Jeremy L. England Lab
- Talks
- Statistical physics of self-replication, Jeremy L. England; J. Chem. Phys. 139, 121923 (2013); doi: 10.1063/1.4818538
- Statistical Physics of Adaptation, Nikolai Perunov, Robert Marsland, and Jeremy England, arXiv, December 8, 2014
- Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, Gavin E. Crooks, arXiv, February 1, 2008
- Life as a manifestation of the second law of thermodynamics, E.D. Schneider, J.J. Kay, doi:10.1016/0895-7177(94)90188-0, Mathematical and Computer Modelling, Volume 19, Issues 6–8, March–April 1994, Pages 25-48
Hypothesis annotations
Matter, energy… knowledge: How to harness physics’ demonic power | New Scientist
Running a brain-twisting thought experiment for real shows that information is a physical thing – so can we now harness the most elusive entity in the cosmos?
References
- Second Law of Thermodynamics with Discrete Quantum Feedback Control by Takahiro Sagawa and Masahito Ueda; Phys. Rev. Lett. 100, 080403 – Published 26 February 2008
- Work and information processing in a solvable model of Maxwell’s demon by Dibyendu Mandal and Christopher Jarzynski; PNAS vol. 109 no. 29, July 17, 2012
- Thermodynamic Costs of Information Processing in Sensory Adaptation by Pablo Sartori, Léo Granger, Chiu Fan Lee, and Jordan M. Horowitz; PLOS December 11, 2014 http://dx.doi.org/10.1371/journal.pcbi.1003974
- Intermittent transcription dynamics for the rapid production of long transcripts of high fidelity by Depken M1, Parrondo JM, Grill SW; Cell Rep. 2013 Oct 31;5(2):521-30. doi: 10.1016/j.celrep.2013.09.007
- The stepping motor protein as a feedback control ratchet by Martin Bier; BioSystems 88 (2007) 301–307
Forthcoming ITBio-related book from Sean Carroll: “The Big Picture: On the Origins of Life, Meaning, and the Universe Itself”
Prior to the holidays Sean wrote a blogpost that contains a full overview table of contents, which will give everyone a stronger idea of its contents. For convenience I’ll excerpt it below.
I’ll post a review as soon as a copy arrives, but it looks like a strong new entry in the category of popular science books on information theory, biology and complexity as well as potentially the areas of evolution, the origin of life, and physics in general.
As a side bonus, for those reading this today (1/15/16), I’ll note that Carroll’s 12 part lecture series from The Great Courses The Higgs Boson and Beyond (The Learning Company, February 2015) is 80% off.
THE BIG PICTURE: ON THE ORIGINS OF LIFE, MEANING, AND THE UNIVERSE ITSELF
0. Prologue
* Part One: Cosmos
- 1. The Fundamental Nature of Reality
- 2. Poetic Naturalism
- 3. The World Moves By Itself
- 4. What Determines What Will Happen Next?
- 5. Reasons Why
- 6. Our Universe
- 7. Time’s Arrow
- 8. Memories and Causes
* Part Two: Understanding
- 9. Learning About the World
- 10. Updating Our Knowledge
- 11. Is It Okay to Doubt Everything?
- 12. Reality Emerges
- 13. What Exists, and What Is Illusion?
- 14. Planets of Belief
- 15. Accepting Uncertainty
- 16. What Can We Know About the Universe Without Looking at It?
- 17. Who Am I?
- 18. Abducting God
* Part Three: Essence
- 19. How Much We Know
- 20. The Quantum Realm
- 21. Interpreting Quantum Mechanics
- 22. The Core Theory
- 23. The Stuff of Which We Are Made
- 24. The Effective Theory of the Everyday World
- 25. Why Does the Universe Exist?
- 26. Body and Soul
- 27. Death Is the End
* Part Four: Complexity
- 28. The Universe in a Cup of Coffee
- 29. Light and Life
- 30. Funneling Energy
- 31. Spontaneous Organization
- 32. The Origin and Purpose of Life
- 33. Evolution’s Bootstraps
- 34. Searching Through the Landscape
- 35. Emergent Purpose
- 36. Are We the Point?
* Part Five: Thinking
- 37. Crawling Into Consciousness
- 38. The Babbling Brain
- 39. What Thinks?
- 40. The Hard Problem
- 41. Zombies and Stories
- 42. Are Photons Conscious?
- 43. What Acts on What?
- 44. Freedom to Choose
* Part Six: Caring
- 45. Three Billion Heartbeats
- 46. What Is and What Ought to Be
- 47. Rules and Consequences
- 48. Constructing Goodness
- 49. Listening to the World
- 50. Existential Therapy
- Appendix: The Equation Underlying You and Me
- Acknowledgments
- Further Reading
- References
- Index
Why Information Grows: The Evolution of Order, from Atoms to Economies
From the book description:
“What is economic growth? And why, historically, has it occurred in only a few places? Previous efforts to answer these questions have focused on institutions, geography, finances, and psychology. But according to MIT’s antidisciplinarian César Hidalgo, understanding the nature of economic growth demands transcending the social sciences and including the natural sciences of information, networks, and complexity. To understand the growth of economies, Hidalgo argues, we first need to understand the growth of order.
At first glance, the universe seems hostile to order. Thermodynamics dictates that over time, order–or information–will disappear. Whispers vanish in the wind just like the beauty of swirling cigarette smoke collapses into disorderly clouds. But thermodynamics also has loopholes that promote the growth of information in pockets. Our cities are pockets where information grows, but they are not all the same. For every Silicon Valley, Tokyo, and Paris, there are dozens of places with economies that accomplish little more than pulling rocks off the ground. So, why does the US economy outstrip Brazil’s, and Brazil’s that of Chad? Why did the technology corridor along Boston’s Route 128 languish while Silicon Valley blossomed? In each case, the key is how people, firms, and the networks they form make use of information.
Seen from Hidalgo’s vantage, economies become distributed computers, made of networks of people, and the problem of economic development becomes the problem of making these computers more powerful. By uncovering the mechanisms that enable the growth of information in nature and society, Why Information Grows lays bear the origins of physical order and economic growth. Situated at the nexus of information theory, physics, sociology, and economics, this book propounds a new theory of how economies can do, not just more, but more interesting things.”
Popular Science Books on Information Theory, Biology, and Complexity
Introductory / General Readership / Popular Science Books
These books are written on a generally non-technical level and give a broad overview of their topics with occasional forays into interesting or intriguing subtopics. They include little, if any, mathematical equations or conceptualization. Typically, any high school student should be able to read, follow, and understand the broad concepts behind these books. Though often non-technical, these texts can give some useful insight into the topics at hand, even for the most advanced researchers.
Complexity: A Guided Tour by Melanie Mitchell (review)
Possibly one of the best places to start, this text gives a great overview of most of the major areas of study related to these fields.
Entropy Demystified: The Second Law Reduced to Plain Common Sense by Arieh Ben-Naim
One of the best books on the concept of entropy out there. It can be read even by middle school students with no exposure to algebra and does a fantastic job of laying out the conceptualization of how entropy underlies large areas of the broader subject. Even those with Ph.D.’s in statistical thermodynamics can gain something useful from this lovely volume.
The Information: A History, a Theory, a Flood by James Gleick (review)
A relatively recent popular science volume covering various conceptualizations of what information is and how it’s been dealt with in science and engineering. Though it has its flaws, its certainly a good introduction to the beginner, particularly with regard to history.
The Origin of Species by Charles Darwin
One of the most influential pieces of writing known to man, this classical text is the basis from which major strides in biology have been made as a result. A must read for everyone on the planet.
Information, Entropy, Life and the Universe: What We Know and What We Do Not Know by Arieh Ben-Naim
Information Theory and Evolution by John Avery
The Touchstone of Life: Molecular Information, Cell Communication, and the Foundations of Life by Werner R. Loewenstein (review)
Information Theory, Evolution, and the Origin of Life by Hubert P. Yockey
The four books above have a significant amount of overlap. Though one could read all of them, I recommend that those pressed for time choose Ben-Naim first. As I write this I’ll note that Ben-Naim’s book is scheduled for release on May 30, 2015, but he’s been kind enough to allow me to read an advance copy while it was in process; it gets my highest recommendation in its class. Loewenstein covers a bit more than Avery who also has a more basic presentation. Most who continue with the subject will later come across Yockey’s Information Theory and Molecular Biology which is similar to his text here but written at a slightly higher level of sophistication. Those who finish at this level of sophistication might want to try Yockey third instead.
The Red Queen: Sex and the Evolution of Human Nature by Matt Ridley
Grammatical Man: Information, Entropy, Language, and Life by Jeremy Campbell
Life’s Ratchet: How Molecular Machines Extract Order from Chaos by Peter M. Hoffmann
Complexity: The Emerging Science at the Edge of Order and Chaos by M. Mitchell Waldrop
The Big Picture: On the Origins of Life, Meaning, and the Universe Itself (Dutton, May 10, 2016)
In the coming weeks/months, I’ll try to continue putting recommended books on the remainder of the rest of the spectrum, the balance of which follows in outline form below. As always, I welcome suggestions and recommendations based on others’ experiences as well. If you’d like to suggest additional resources in any of the sections below, please do so via our suggestion box. For those interested in additional resources, please take a look at the ITBio Resources page which includes information about related research groups; references and journal articles; academic, research institutes, societies, groups, and organizations; and conferences, workshops, and symposia.
Lower Level Undergraduate
These books are written at a level that can be grasped and understood by most with a freshmen or sophomore university level. Coursework in math, science, and engineering will usually presume knowledge of calculus, basic probability theory, introductory physics, chemistry, and basic biology.
Upper Level Undergraduate
These books are written at a level that can be grasped and understood by those at a junior or senor university level. Coursework in math, science, and engineering may presume knowledge of probability theory, differential equations, linear algebra, complex analysis, abstract algebra, signal processing, organic chemistry, molecular biology, evolutionary theory, thermodynamics, advanced physics, and basic information theory.
Graduate Level
These books are written at a level that can be grasped and understood by most working at the level of a master’s level at most universities. Coursework presumes all the previously mentioned classes, though may require a higher level of sub-specialization in one or more areas of mathematics, physics, biology, or engineering practice. Because of the depth and breadth of disciplines covered here, many may feel the need to delve into areas outside of their particular specialization.
Uri Alon: Why Truly Innovative Science Demands a Leap into the Unknown
[ted id=2020]
Uri Alon was already one of my scientific heroes, but this adds a lovely garnish.
Review of The Signal and the Noise: Why So Many Predictions Fail – But Some Don’t
Business & Economics
Penguin Press HC
September 27, 2012
Hardcover
534
personal library
The founder of FiveThirtyEight.com challenges myths about predictions in subjects ranging from the financial market and weather to sports and politics, profiling the world of prediction to explain how readers can distinguish true signals from hype, in a report that also reveals the sources and societal costs of wrongful predictions.
Finished Reading: October 13, 2013
Given the technical nature of what Nate Silver does, and some of the early mentions of the book, I had higher hopes for the technical portions of the book. As usual for a popular text, I was left wanting a lot more. Again, the lack of any math left a lot to desire. I wish technical writers could get away with even a handful of equations, but wishing just won’t make it so.
The first few chapters were a bit more technical sounding, but eventually devolved into a more journalistic viewpoint of statistics, prediction, and forecasting in general within the areas of economics, political elections, weather forecasting, earthquakes, baseball, poker, chess, and terrorism. I have a feeling he lost a large part of his audience in the first few chapters by discussing the economic meltdown of 2008 first instead of baseball or poker and then getting into politics and economics.
While some of the discussion around each of these bigger topics are all intrinsically interesting and there were a few interesting tidbits I hadn’t heard or read about previously, on the whole it wasn’t really as novel as I had hoped it would be. I think it should be required reading for all politicians however, as I too often get the feeling that none of them think at this level.
There was some reasonably good philosophical discussion of Bayesian statistics versus Fisherian, but it was all too short and could have been fleshed out more significantly. I still prefer David Applebaum’s historical and philosophical discussion of probability in Probability and Information: An Integrated Approach though he surprisingly didn’t mention R.A. Fisher directly himself in his coverage.
It was interesting to run across additional mentions of power laws in the realms of earthquakes and terrorism after reading Melanie Mitchell’s Complexity: A Guided Tour (review here), but I’ll have to find some texts which describe the mathematics in full detail. There was surprisingly large amount of discussion skirting around the topics within complexity without delving into it in any substantive form.
For those with a pre-existing background in science and especially probability theory, I’d recommend skipping this and simply reading Daniel Kahneman’s book Thinking, Fast and Slow. Kahneman’s work is referenced several times and his book seems less intuitive than some of the material Silver presents here.
This is the kind of text which should be required reading in high school civics classes. Perhaps it might motivate more students to be interested in statistics and science related pursuits as these are almost always at the root of most political and policy related questions at the end of the day.
For me, I’d personally give this three stars, but the broader public should view it with at least four stars if not five as there is some truly great stuff here. Unfortunately a lot of it is old hat or retreaded material for me.
Book Review: “Complexity: A Guided Tour” by Melanie Mitchell
Popular Science
Oxford University Press
May 28, 2009
Hardcover
366
This book provides an intimate, highly readable tour of the sciences of complexity, which seek to explain how large-scale complex, organized, and adaptive behavior can emerge from simple interactions among myriad individuals. The author, a leading complex systems scientist, describes the history of ideas, current research, and future prospects in this vital scientific effort.
This is handily one of the best, most interesting, and (to me at least) the most useful popularly written science books I’ve yet to come across. Most popular science books usually bore me to tears and end up being only pedantic for their historical backgrounds, but this one is very succinct with some interesting viewpoints (some of which I agree with and some of which my intuition says are terribly wrong) on the overall structure presented.
For those interested in a general and easily readable high-level overview of some of the areas of research I’ve been interested in (information theory, thermodynamics, entropy, microbiology, evolution, genetics, along with computation, dynamics, chaos, complexity, genetic algorithms, cellular automata, etc.) for the past two decades, this is really a lovely and thought-provoking book.
At the start I was disappointed that there were almost no equations in the book to speak of – and perhaps this is why I had purchased it when it came out and it’s subsequently been sitting on my shelf for so long. The other factor that prevented me from reading it was the depth and breadth of other more technical material I’ve read which covers the majority of topics in the book. I ultimately found myself not minding so much that there weren’t any/many supporting equations aside from a few hidden in the notes at the end of the text in most part because Dr. Mitchell does a fantastic job of pointing out some great subtleties within the various subjects which comprise the broader concept of complexity which one generally would take several years to come to on one’s own and at far greater expense of their time. Here she provides a much stronger picture of the overall subjects covered and this far outweighed the lack of specificity. I honestly wished I had read the book when it was released and it may have helped me to me more specific in my own research. Fortunately she does bring up several areas I will need to delve more deeply into and raised several questions which will significantly inform my future work.
In general, I wish there were more references I hadn’t read or been aware of yet, but towards the end there were a handful of topics relating to fractals, chaos, computer science, and cellular automata which I have been either ignorant of or which are further down my reading lists and may need to move closer to the top. I look forward to delving into many of these shortly. As a simple example, I’ve seen Zipf’s law separately from the perspectives of information theory, linguistics, and even evolution, but this is the first time I’ve seen it related to power laws and fractals.
I definitely appreciated the fact that Dr. Mitchell took the time to point out her own personal feelings on several topics and more so that she explicitly pointed them out as her own gut instincts instead of mentioning them passingly as if they were provable science which is what far too many other authors would have likely done. There are many viewpoints she takes which I certainly don’t agree with, but I suspect that it’s because I’m coming at things from the viewpoint of an electrical engineer with a stronger background in information theory and microbiology while hers is closer to that of computer science. She does mention that her undergraduate background was in mathematics, but I’m curious what areas she specifically studied to have a better understanding of her specific viewpoints.
Her final chapter looking at some of the pros and cons of the topic(s) was very welcome, particularly in light of previous philosophic attempts like cybernetics and general systems theory which I (also) think failed because of their lack of specificity. These caveats certainly help to place the scientific philosophy of complexity into a much larger context. I will generally heartily agree with her viewpoint (and that of others) that there needs to be a more rigorous mathematical theory underpinning the overall effort. I’m sure we’re all wondering “Where is our Newton?” or to use her clever aphorism that we’re “waiting for Carnot.” (Sounds like it should be a Tom Stoppard play title, doesn’t it?)
I might question her brief inclusion of her own Ph.D. thesis work in the text, but it did actually provide a nice specific and self-contained example within the broader context and also helped to tie several of the chapters together.
My one slight criticism of the work would be the lack of better footnoting within the text. Though many feel that footnote numbers within the text or inclusion at the bottom of the pages detracts from the “flow” of the work, I found myself wishing that she had done so here, particularly as I’m one of the few who actually cares about the footnotes and wants to know the specific references as I read. I hope that Oxford eventually publishes an e-book version that includes cross-linked footnotes in the future for the benefit of others.
I can heartily recommend this book to any fan of science, but I would specifically recommend it to any undergraduate science or engineering major who is unsure of what they’d specifically like to study and might need some interesting areas to take a look at. I will mention that one of the tough parts of the concept of complexity is that it is so broad and general that it encompasses over a dozen other fields of study each of which one could get a Ph.D. in without completely knowing the full depth of just one of them much less the full depth of all of them. The book is so well written that I’d even recommend it to senior researchers in any of the above mentioned fields as it is certainly sure to provide not only some excellent overview history of each, but it is sure to bring up questions and thoughts that they’ll want to include in their future researches in their own specific sub-areas of expertise.
How to Sidestep Mathematical Equations in Popular Science Books
I suspect that there is a corollary to this that every picture included in the text will help to increase your readership, though possibly not by as proportionally a large amount.
In any case, while reading Melanie Mitchell’s text Complexity: A Guided Tour [Cambridge University Press, 2009] this weekend, I noticed that, in what appears to be a concerted effort to include an equation without technically writing it into the text and to simultaneously increase readership by including a picture, she cleverly used a picture of Boltzmann’s tombstone in Vienna! Most fans of thermodynamics will immediately recognize Boltzmann’s equation for entropy, , which appears engraved on the tombstone over his bust.
I hope that future mathematicians, scientists, and engineers will keep this in mind and have their tombstones engraved with key formulae to assist future authors in doing the same – hopefully this will help to increase the amount of mathematics that is deemed “acceptable” by the general public.
Brief Book Review: James Gleick’s “The Information: a History, a Theory, a Flood”
There are one or two references in the back which I’ll have to chase down and read and one or two, which after many years, seem like they may be worth a second revisiting after having completed this.
Even for the specialist, Gleick manages to tie together some disparate thoughts to create an excellent whole which makes it a very worthwhile read. I found towards the last several chapters, Gleick’s style becomes much more flowery and less concrete, but most of it is as a result of covering the “humanities” perspective of information as opposed to the earlier parts of the text which were more specific to history and the scientific theories he covered.
Book Review: Charles Seife’s “Proofiness: The Dark Arts of Mathematical Deception”
Mathematics, Popular Science
Penguin
September 23, 2010
Hardcover
320
The bestselling author of Zero shows how mathematical misinformation pervades-and shapes-our daily lives. According to MSNBC, having a child makes you stupid. You actually lose IQ points. Good Morning America has announced that natural blondes will be extinct within two hundred years. Pundits estimated that there were more than a million demonstrators at a tea party rally in Washington, D.C., even though roughly sixty thousand were there. Numbers have peculiar powers-they can disarm skeptics, befuddle journalists, and hoodwink the public into believing almost anything. "Proofiness," as Charles Seife explains in this eye-opening book, is the art of using pure mathematics for impure ends, and he reminds readers that bad mathematics has a dark side. It is used to bring down beloved government officials and to appoint undeserving ones (both Democratic and Republican), to convict the innocent and acquit the guilty, to ruin our economy, and to fix the outcomes of future elections. This penetrating look at the intersection of math and society will appeal to readers of Freakonomics and the books of Malcolm Gladwell.
Proofiness was a great book to have read over a long Fourth of July holiday. Though many people may realize some of the broad general concepts in the book, it’s great to have a better structure for talking about concepts like Potemkin numbers, disestimation, fruit packing, cherry picking, apple polishing, comparing apples to oranges, causuistry, randnumbness, regression to the moon, tragedy of the commons, and moral hazard among others. If you didn’t think mathematics was important to daily life or our democratic society, this book will certainly change your mind.
Seife covers everything from polls, voting, politics, economics, marketing, law, and even health to show how numbers are misused in a modern world that can ill-afford to ignore what is really going on around us.
This is a fantastic book for nearly everyone in the general public, but I’d highly recommend it for high school students while taking civics.
Reading Progress
David Christian’s “Maps of Time” and “Big History” – a Profound Thesis
David Christian, a trained historian, is one of the leading proponents of the relatively new concept of Big History, which I view as a sea-change in the way humans will begin to view not only the world but our place in it and what we might expect to come in the future. His work presents a truly monumental and profound thesis and a drastically new framework for where humankind fits into the universe. Of the broad variety of works I’ve read in the past several decades, it is simply one of the most interesting and cohesive theses I’ve come across, and I highly and unreservedly recommend it to everyone I know. I’d put it on par or above works like Jared Diamond’s Guns, Germs, and Steel and Matt Ridley’s The Rational Optimist among others for its broad impact on how I now view the world. For scientists and researchers it has the potential to be the philosophical equivalent of The Bible and in fact, like many religious texts, it is in effect a modern day “creation myth,” albeit one with a scientific underpinning.
Christian’s work was initially brought to my attention by an article in the Chronicle of Higher Education by Jeffrey R. Young in which he mentioned that Bill Gates was a big fan of Christian’s work and had recommended it himself at a TED conference. (Gates is now also a financial supporter of Christian’s Big History Project.) I myself was aware of the Learning Company’s generally excellent coursework offerings and within a few weeks got an audio copy of the course of forty-eight lectures to listen to on my daily commute.
I’ve now devoured both his rather large text on the subject as well as a lecture series he created for a course on the subject. Below are brief reviews of the two works.The magnum written opus Maps of Time: An Introduction to Big History is an interesting change of reference from a historical perspective combining the disciplines of physics, cosmology, astronomy, geology, chemistry, microbiology, evolutionary theory, archaeology, politics, religion, economics, sociology, and history into one big area of contiguous study based upon much larger timescales than those traditionally taken in the study of historical time periods. Though it takes pieces from many disciplines, it provides for an interesting, fresh, and much needed perspective on who humans are and their place in not only the world, but the entire universe.
By looking at history from a much broader viewpoint (billions of years versus the more common decades or even just a few centuries) one comes away with a drastically different perspective on the universe and life.
I’d highly recommend this to any general reader as early as they can find time to read through it, particularly because it provides such an excellent base for a variety of disciplines thereby better framing their future studies. I wish I had been able to read this book in the ninth or tenth grade or certainly at the latest by my freshman year in college – alas the general conception of the topic itself didn’t exist until after I had graduated from university.
Although I have significant backgrounds in most, if not all, of the disciplines which comprise the tapestry of big history, the background included in the book is more than adequate to give the general reader the requisite introductions to these subjects to make big history a coherent subject on its own.
This could be an extremely fundamental and life-changing book for common summer reading programs of incoming college freshman. If I could, I would make it required reading for all students at the high school level. Fortunately Bill Gates and others are helping to fund David Christian’s work to help introduce it more broadly at the high school and other educational levels.
Within David Christian’s opus, there is also a collection of audio lectures produced by The Learning Company as part of their Great Courses series which I listened to as well. The collection of forty-eight lectures is entitled Big History: The Big Bang, Life on Earth, and the Rise of Humanity (Great Courses, Course No. 8050). It provides a much quicker philosophical overview of the subject and doesn’t delve as deeply into the individual disciplines as the text does, but still provides a very cohesive presentation of the overall thesis. In fact, for me, the introduction to the topic was much better in these audio lectures than it was in the written book. Christian’s lecture style is fantastic and even better than his already excellent writing style.
In the audio lectures Christian highlights eight major thresholds which he uses as a framework by which to view the 13.4 billion years of history which the Universe has presently traversed. Then within those he uses the conceptualization of disparities in power/energy as the major driving forces/factors in history in a unique and enlightening way which provides a wealth of perspective on almost every topic (scientific or historical) one can consider. This allows one to see parallels and connections between seemingly disparate topics like the creations of stars and the first building of cities or how the big bang is similar to the invention of agriculture.
I can easily say that David Christian’s works on big history are some of the most influential works I’ve ever come across – and having experienced them, I can never see our universe in the same naive way again.
For those interested in taking a short and immediate look at Christian’s work, I can recommend his Ted Talk “The History of Our World in 18 Minutes” which only begins to scratch the surface of his much deeper and profound thesis: [ted id=1118]
Given how profound the topic of big history is, I’m sure I’ll be writing about and referring to it often. Posts in relation to it can be found here with the tag: “big history“.
Added material below on 21-October-2016
Reading Progress
- 03/11/2011 marked as: want to read after reading Bill Gates Promotes Professor’s Online Course at TED by Jeffrey R. Young in The Chronicle of Higher Education
- 08/26/11 started reading
- 08/27/11
- 03/01/12 “Reread some of the beginning this morning as I get back into David Christian’s audio lectures.”
- 04/28/12
- 04/30/12
- 05/03/12
- 05/05/12
- 05/23/12
- 06/02/12
- 06/14/12
- 06/17/12 ; “Technically finished reading, but need to still go through the endnotes.”
- 10/21/12
Added material below on 23-October-2016
Highlights, Quotes, & Marginalia
Guide to highlight colors
Yellow–general highlights and highlights which don’t fit under another category below
Orange–Vocabulary word; interesting and/or rare word
Green–Reference to read
Blue–Interesting Quote
Gray–Typography Problem
Red–Example to work through
Editor’s Note: Data relating to reading progress was added to this post on 10/21/16. Data relating to highlights, quotes, and marginalia added on 10/23/16.
Mathematics in Popular Science Books | The Economist
Popular physics has enjoyed a new-found regard. Now comes a brave attempt to inject mathematics into an otherwise fashionable subject
Fundamental physics
Big bang
Popular physics has enjoyed a new-found regard. Now comes a brave attempt to inject mathematics into an otherwise fashionable subject
Nov 5th 2011 | from the print edition
The Quantum Universe: Everything That Can Happen Does Happen. By Brian Cox and Jeff Forshaw. Allen Lane; 255 pages; £20. To be published in America in January by Da Capo Press; $25.
PREVIOUSLY the preserve of dusty, tweed-jacketed academics, physics has enjoyed a surprising popular renaissance over the past few years. In America Michio Kaku, a string theorist, has penned several successful books and wowed television and radio audiences with his presentations on esoteric subjects such as the existence of wormholes and the possibility of alien life. In Britain Brian Cox, a former pop star whose music helped propel Tony Blair to power, has become the front man for physics, which recently regained its status as a popular subject in British classrooms, an effect many attribute to Mr Cox’s astonishing appeal.
Mr Cox, a particle physicist, is well-known as the presenter of two BBC television series that have attracted millions of viewers (a third series will be aired next year) and as a bestselling author and public speaker. His latest book, “The Quantum Universe”, which he co-wrote with Jeff Forshaw of the University of Manchester, breaks the rules of popular science-writing that were established over two decades ago by Stephen Hawking, who launched the modern genre with his famous book, “A Brief History of Time”.
Mr Hawking’s literary success was ascribed to his eschewing equations. One of his editors warned him that sales of the book would be halved by every equation he included; Mr Hawking inserted just one, E=mc2, and, even then, the volume acquired a sorry reputation for being bought but not read. By contrast, Mr Cox, whose previous book with Mr Forshaw investigated “Why does E=mc2?” (2009), has bravely sloshed a generous slug of mathematics throughout his texts.
The difficulties in explaining physics without using maths are longstanding. Einstein mused, “The eternal mystery of the world is its comprehensibility,” and “the fact that it is comprehensible is a miracle.” Yet the language in which the world is described is that of maths, a relatively sound grasp of which is needed to comprehend the difficulties that physicists are trying to resolve as well as the possible solutions. Mr Cox has secured a large fan base with his boyish good looks, his happy turns of phrase and his knack for presenting complex ideas using simple analogies. He also admirably shies away from dumbing down. “The Quantum Universe” is not a dry undergraduate text book, but nor is it a particularly easy read.
The subject matter is hard. Quantum mechanics, which describes in subatomic detail a shadowy world in which cats can be simultaneously alive and dead, is notoriously difficult to grasp. Its experiments yield bizarre results that can be explained only by embracing the maths that describe them, and its theories make outrageous predictions (such as the existence of antimatter) that have nevertheless later been verified. Messrs Cox and Forshaw say they have included the maths “mainly because it allows us to really explain why things are the way they are. Without it, we should have to resort to the physicist-guru mentality whereby we pluck profundities out of thin air, and neither author would be comfortable with guru status.”
That stance might comfort the authors, but to many readers they will nonetheless seem to pluck equations out of thin air. Yet their decision to include some of the hard stuff leaves open the possibility that some readers might actually engage in the slog that leads to higher pleasures. For non-sloggers alternative routes are offered: Messrs Cox and Forshaw use clockfaces to illustrate how particles interact with one another, a drawing of how guitar strings twang and a photograph of a vibrating drum. A diagram, rather than an equation, is used to explain one promising theory of how matter acquires mass, a question that experiments on the Large Hadron Collider at CERN, the European particle-physics laboratory near Geneva, will hopefully soon answer.
The authors have wisely chosen to leaven their tome with amusing tales of dysfunctional characters among scholars who developed quantum mechanics in the 1920s and beyond, as well as with accounts of the philosophical struggles with which they grappled and the occasional earthy aside. Where the subject matter is a trifle dull, Messrs Cox and Forshaw acknowledge it: of Heinrich Kayser, who a century ago completed a six-volume reference book documenting the spectral lines generated by every known element, they observe, “He must have been great fun at dinner parties.” And they make some sweeping generalisations about their colleagues who pore over equations, “Physicists are very lazy, and they would not go to all this trouble unless it saved time in the long run.”
Whether or not readers of “The Quantum Universe” will follow all the maths, the authors’ love for their subject shines through the book. “There is no better demonstration of the power of the scientific method than quantum theory,” they write. That may be so, but physicists all over the world, Messrs Cox and Forshaw included, are longing for the next breakthrough that will supersede the claim. Hopes are pinned on experiments currently under way at CERN that may force physicists to rethink their understanding of the universe, and inspire Messrs Cox and Forshaw to write their next book—equations and all.
from the print edition | Books and arts