Bookmarked EP33 Melanie Mitchell on the Elements of AI by Jim Rutt (The Jim Rutt Show)
Melanie Mitchell & Jim talk about the many approaches to creating AI, hype cycles, self-driving cars, what can be learned from human intelligence, & more!

🎧 Mindscape 68 | Melanie Mitchell on Artificial Intelligence and the Challenge of Common Sense

Listened to Mindscape 68 | Melanie Mitchell on Artificial Intelligence and the Challenge of Common Sense by Sean Carroll from preposterousuniverse.com

Artificial intelligence is better than humans at playing chess or go, but still has trouble holding a conversation or driving a car. A simple way to think about the discrepancy is through the lens of “common sense” — there are features of the world, from the fact that tables are solid to the prediction that a tree won’t walk across the street, that humans take for granted but that machines have difficulty learning. Melanie Mitchell is a computer scientist and complexity researcher who has written a new book about the prospects of modern AI. We talk about deep learning and other AI strategies, why they currently fall short at equipping computers with a functional “folk physics” understanding of the world, and how we might move forward.

Melanie Mitchell received her Ph.D. in computer science from the University of Michigan. She is currently a professor of computer science at Portland State University and an external professor at the Santa Fe Institute. Her research focuses on genetic algorithms, cellular automata, and analogical reasoning. She is the author of An Introduction to Genetic Algorithms, Complexity: A Guided Tour, and most recently Artificial Intelligence: A Guide for Thinking Humans. She originated the Santa Fe Institute’s Complexity Explorer project, on online learning resource for complex systems.

One of the more interesting interviews of Dr. Mitchell with respect to her excellent new book Dr. Carroll gets the space she’s working in and is able to have a more substantive conversation as a result.

❤️ MelMitchell1 tweeted Bound galleys of my new book arrived today! It will be published in October. https://t.co/VmC51EzL53

Liked a tweet by Melanie Mitchell Melanie Mitchell (Twitter)

🔖 Artificial Intelligence: A Guide for Thinking Humans by Melanie Mitchell

Bookmarked Artificial Intelligence: A Guide for Thinking Humans by Melanie Mitchell (curtisbrown.co.uk)

No recent scientific enterprise has been so alluring, so terrifying, and so filled with extravagant promise and frustrating setbacks as artificial intelligence. But how intelligent—really—are the best of today’s AI programs? How do these programs work? What can they actually do, and what kinds of things do they fail at? How human-like do we expect them to become, and how soon do we need to worry about them surpassing us in most, if not all, human endeavors? 

From Melanie Mitchell, a leading professor and computer scientist, comes an in-depth and careful study of modern day artificial intelligence. Exploring the cutting edge of current AI and the prospect of 'intelligent' mechanical creations - who many fear may become our successors - Artificial Intelligence looks closely at the allure, the roller-coaster history, and the recent surge of seeming successes, grand hopes, and emerging fears surrounding AI. Flavoured with personal stories and a twist of humour, this ultimately accessible account of modern AI gives a clear sense of what the field has actually accomplished so far and how much further it has to go.

🎧 Episode 077 Exploring Artificial Intelligence with Melanie Mitchell | Human Current

Listened to Episode 077 Exploring Artificial Intelligence with Melanie Mitchell by Haley Campbell-GrossHaley Campbell-Gross from HumanCurrent

What is artificial intelligence? Could unintended consequences arise from increased use of this technology? How will the role of humans change with AI? How will AI evolve in the next 10 years?

In this episode, Haley interviews leading Complex Systems Scientist, Professor of Computer Science at Portland State University, and external professor at the Santa Fe Institute, Melanie Mitchell. Professor Mitchell answers many profound questions about the field of artificial intelligence and gives specific examples of how this technology is being used today. She also provides some insights to help us navigate our relationship with AI as it becomes more popular in the coming years.

Melanie Mitchell on Human Current
Definitely worth a second listen.

🎧 Episode 077 Exploring Artificial Intelligence with Melanie Mitchell | HumanCurrent

Listened to Episode 077: Exploring Artificial Intelligence with Melanie Mitchell by Haley Campbell-GrossHaley Campbell-Gross from HumanCurrent

What is artificial intelligence? Could unintended consequences arise from increased use of this technology? How will the role of humans change with AI? How will AI evolve in the next 10 years?

In this episode, Haley interviews leading Complex Systems Scientist, Professor of Computer Science at Portland State University, and external professor at the Santa Fe InstituteMelanie Mitchell. Professor Mitchell answers many profound questions about the field of artificial intelligence and gives specific examples of how this technology is being used today. She also provides some insights to help us navigate our relationship with AI as it becomes more popular in the coming years.

Melanie Mitchell
I knew Dr. Mitchell was working on a book during her hiatus, but didn’t know it was potentially coming out so soon! I loved her last book and can’t wait to get this one. Sadly, there’s no pre-order copies available at any of the usual suspects yet.

Review of The Signal and the Noise: Why So Many Predictions Fail – But Some Don’t

Read The Signal and the Noise: Why So Many Predictions Fail - But Some Don't by Nate SilverNate Silver (Amazon.com)
The Signal and the Noise: Why So Many Predictions Fail, But Some Don't Book Cover The Signal and the Noise: Why So Many Predictions Fail, But Some Don't
Nate Silver
Business & Economics
Penguin Press HC
September 27, 2012
Hardcover
534
personal library

The founder of FiveThirtyEight.com challenges myths about predictions in subjects ranging from the financial market and weather to sports and politics, profiling the world of prediction to explain how readers can distinguish true signals from hype, in a report that also reveals the sources and societal costs of wrongful predictions.

Started Reading: May 25, 2013
Finished Reading: October 13, 2013

Given the technical nature of what Nate Silver does, and some of the early mentions of the book, I had higher hopes for the technical portions of the book. As usual for a popular text, I was left wanting a lot more. Again, the lack of any math left a lot to desire. I wish technical writers could get away with even a handful of equations, but wishing just won’t make it so.

The first few chapters were a bit more technical sounding, but eventually devolved into a more journalistic viewpoint of statistics, prediction, and forecasting in general within the areas of economics, political elections, weather forecasting, earthquakes, baseball, poker, chess, and terrorism. I have a feeling he lost a large part of his audience in the first few chapters by discussing the economic meltdown of 2008 first instead of baseball or poker and then getting into politics and economics.

While some of the discussion around each of these bigger topics are all intrinsically interesting and there were a few interesting tidbits I hadn’t heard or read about previously, on the whole it wasn’t really as novel as I had hoped it would be. I think it should be required reading for all politicians however, as I too often get the feeling that none of them think at this level.

There was some reasonably good philosophical discussion of Bayesian statistics versus Fisherian, but it was all too short and could have been fleshed out more significantly. I still prefer David Applebaum’s historical and philosophical discussion of probability in Probability and Information: An Integrated Approach though he surprisingly didn’t mention R.A. Fisher directly himself in his coverage.

It was interesting to run across additional mentions of power laws in the realms of earthquakes and terrorism after reading Melanie Mitchell’s Complexity: A Guided Tour (review here), but I’ll have to find some texts which describe the mathematics in full detail. There was surprisingly large amount of discussion skirting around the topics within complexity without delving into it in any substantive form.

For those with a pre-existing background in science and especially probability theory, I’d recommend skipping this and simply reading Daniel Kahneman’s book Thinking, Fast and Slow. Kahneman’s work is referenced several times and his book seems less intuitive than some of the material Silver presents here.

This is the kind of text which should be required reading in high school civics classes. Perhaps it might motivate more students to be interested in statistics and science related pursuits as these are almost always at the root of most political and policy related questions at the end of the day.

For me, I’d personally give this three stars, but the broader public should view it with at least four stars if not five as there is some truly great stuff here. Unfortunately a lot of it is old hat or retreaded material for me.

Book Review: “Complexity: A Guided Tour” by Melanie Mitchell

Read Complexity: A Guided Tour by Melanie MitchellMelanie Mitchell (amzn.to)
Complexity: A Guided Tour Book Cover Complexity: A Guided Tour
Melanie Mitchell
Popular Science
Oxford University Press
May 28, 2009
Hardcover
366

This book provides an intimate, highly readable tour of the sciences of complexity, which seek to explain how large-scale complex, organized, and adaptive behavior can emerge from simple interactions among myriad individuals. The author, a leading complex systems scientist, describes the history of ideas, current research, and future prospects in this vital scientific effort.

This is handily one of the best, most interesting, and (to me at least) the most useful popularly written science books I’ve yet to come across. Most popular science books usually bore me to tears and end up being only pedantic for their historical backgrounds, but this one is very succinct with some interesting viewpoints (some of which I agree with and some of which my intuition says are terribly wrong) on the overall structure presented.

For those interested in a general and easily readable high-level overview of some of the areas of research I’ve been interested in (information theory, thermodynamics, entropy, microbiology, evolution, genetics, along with computation, dynamics, chaos, complexity, genetic algorithms, cellular automata, etc.) for the past two decades, this is really a lovely and thought-provoking book.

At the start I was disappointed that there were almost no equations in the book to speak of – and perhaps this is why I had purchased it when it came out and it’s subsequently been sitting on my shelf for so long. The other factor that prevented me from reading it was the depth and breadth of other more technical material I’ve read which covers the majority of topics in the book. I ultimately found myself not minding so much that there weren’t any/many supporting equations aside from a few hidden in the notes at the end of the text in most part because Dr. Mitchell does a fantastic job of pointing out some great subtleties within the various subjects which comprise the broader concept of complexity which one generally would take several years to come to on one’s own and at far greater expense of their time. Here she provides a much stronger picture of the overall subjects covered and this far outweighed the lack of specificity. I honestly wished I had read the book when it was released and it may have helped me to me more specific in my own research. Fortunately she does bring up several areas I will need to delve more deeply into and raised several questions which will significantly inform my future work.

In general, I wish there were more references I hadn’t read or been aware of yet, but towards the end there were a handful of topics relating to fractals, chaos, computer science, and cellular automata which I have been either ignorant of or which are further down my reading lists and may need to move closer to the top. I look forward to delving into many of these shortly. As a simple example, I’ve seen Zipf’s law separately from the perspectives of information theory, linguistics, and even evolution, but this is the first time I’ve seen it related to power laws and fractals.

I definitely appreciated the fact that Dr. Mitchell took the time to point out her own personal feelings on several topics and more so that she explicitly pointed them out as her own gut instincts instead of mentioning them passingly as if they were provable science which is what far too many other authors would have likely done. There are many viewpoints she takes which I certainly don’t agree with, but I suspect that it’s because I’m coming at things from the viewpoint of an electrical engineer with a stronger background in information theory and microbiology while hers is closer to that of computer science. She does mention that her undergraduate background was in mathematics, but I’m curious what areas she specifically studied to have a better understanding of her specific viewpoints.

Her final chapter looking at some of the pros and cons of the topic(s) was very welcome, particularly in light of previous philosophic attempts like cybernetics and general systems theory which I (also) think failed because of their lack of specificity. These caveats certainly help to place the scientific philosophy of complexity into a much larger context. I will generally heartily agree with her viewpoint (and that of others) that there needs to be a more rigorous mathematical theory underpinning the overall effort. I’m sure we’re all wondering “Where is our Newton?” or to use her clever aphorism that we’re “waiting for Carnot.” (Sounds like it should be a Tom Stoppard play title, doesn’t it?)

I might question her brief inclusion of her own Ph.D. thesis work in the text, but it did actually provide a nice specific and self-contained example within the broader context and also helped to tie several of the chapters together.

My one slight criticism of the work would be the lack of better footnoting within the text. Though many feel that footnote numbers within the text or inclusion at the bottom of the pages detracts from the “flow” of the work, I found myself wishing that she had done so here, particularly as I’m one of the few who actually cares about the footnotes and wants to know the specific references as I read. I hope that Oxford eventually publishes an e-book version that includes cross-linked footnotes in the future for the benefit of others.

I can heartily recommend this book to any fan of science, but I would specifically recommend it to any undergraduate science or engineering major who is unsure of what they’d specifically like to study and might need some interesting areas to take a look at. I will mention that one of the tough parts of the concept of complexity is that it is so broad and general that it encompasses over a dozen other fields of study each of which one could get a Ph.D. in without completely knowing the full depth of just one of them much less the full depth of all of them. The book is so well written that I’d even recommend it to senior researchers in any of the above mentioned fields as it is certainly sure to provide not only some excellent overview history of each, but it is sure to bring up questions and thoughts that they’ll want to include in their future researches in their own specific sub-areas of expertise.

How to Sidestep Mathematical Equations in Popular Science Books

In the publishing industry there is a general rule-of-thumb that every mathematical equation included in a book will cut the audience of science books written for a popular audience in half – presumably in a geometric progression. This typically means that including even a handful of equations will give you an effective readership of zero – something no author and certainly no editor or publisher wants.

I suspect that there is a corollary to this that every picture included in the text will help to increase your readership, though possibly not by as proportionally a large amount.

In any case, while reading Melanie Mitchell’s text Complexity: A Guided Tour [Cambridge University Press, 2009] this weekend, I noticed that, in what appears to be a concerted effort to include an equation without technically writing it into the text and to simultaneously increase readership by including a picture, she cleverly used a picture of Boltzmann’s tombstone in Vienna! Most fans of thermodynamics will immediately recognize Boltzmann’s equation for entropy, S = k log W , which appears engraved on the tombstone over his bust.

Page 51 of Melanie Mitchell's book "Complexity: A Guided Tour"
Page 51 of Melanie Mitchell’s book “Complexity: A Guided Tour” featuring Boltzmann’s tombstone in Vienna.

I hope that future mathematicians, scientists, and engineers will keep this in mind and have their tombstones engraved with key formulae to assist future authors in doing the same – hopefully this will help to increase the amount of mathematics that is deemed “acceptable” by the general public.