📅 Entropy 2018: From Physics to Information Sciences and Geometry

RSVPed Might be attending Entropy 2018: From Physics to Information Sciences and Geometry
14-16 May 2018; Auditorium Enric Casassas, Faculty of Chemistry, University of Barcelona, Barcelona, Spain

One of the most frequently used scientific words, is the word “Entropy”. The reason is that it is related to two main scientific domains: physics and information theory. Its origin goes back to the start of physics (thermodynamics), but since Shannon, it has become related to information theory. This conference is an opportunity to bring researchers of these two communities together and create a synergy. The main topics and sessions of the conference cover:

  • Physics: classical Thermodynamics and Quantum
  • Statistical physics and Bayesian computation
  • Geometrical science of information, topology and metrics
  • Maximum entropy principle and inference
  • Kullback and Bayes or information theory and Bayesian inference
  • Entropy in action (applications)

The inter-disciplinary nature of contributions from both theoretical and applied perspectives are very welcome, including papers addressing conceptual and methodological developments, as well as new applications of entropy and information theory.

All accepted papers will be published in the proceedings of the conference. A selection of invited and contributed talks presented during the conference will be invited to submit an extended version of their paper for a special issue of the open access Journal Entropy. 

Entropy 2018 Conference

NIMBioS Workshop: Information Theory and Entropy in Biological Systems

Over the next few days, I’ll be maintaining a Storify story covering information related to and coming out of the Information Theory and Entropy Workshop being sponsored by NIMBios at the Unviersity of Tennessee, Knoxville.

For those in attendance or participating by watching the live streaming video (or even watching the video after-the-fact), please feel free to use the official hashtag #entropyWS, and I’ll do my best to include your tweets, posts, and material into the story stream for future reference.

For journal articles and papers mentioned in/at the workshop, I encourage everyone to join the Mendeley.com group ITBio: Information Theory, Microbiology, Evolution, and Complexity and add them to the group’s list of papers. Think of it as a collaborative online journal club of sorts.

Those participating in the workshop are also encouraged to take a look at a growing collection of researchers and materials I maintain here. If you have materials or resources you’d like to contribute to the list, please send me an email or include them via the suggestions/submission form or include them in the comments section below.

Resources for Information Theory and Biology

RSS Icon  RSS Feed for BoffoSocko posts tagged with #ITBio

 

Bookmarked Information Theory and Statistical Mechanics by E. T. Jaynes (Physical Review, 106, 620 – Published 15 May 1957)

Information theory provides a constructive criterion for setting up probability distributions on the basis of partial knowledge, and leads to a type of statistical inference which is called the maximum-entropy estimate. It is the least biased estimate possible on the given information; i.e., it is maximally noncommittal with regard to missing information. If one considers statistical mechanics as a form of statistical inference rather than as a physical theory, it is found that the usual computational rules, starting with the determination of the partition function, are an immediate consequence of the maximum-entropy principle. In the resulting "subjective statistical mechanics," the usual rules are thus justified independently of any physical argument, and in particular independently of experimental verification; whether or not the results agree with experiment, they still represent the best estimates that could have been made on the basis of the information available.

It is concluded that statistical mechanics need not be regarded as a physical theory dependent for its validity on the truth of additional assumptions not contained in the laws of mechanics (such as ergodicity, metric transitivity, equal a priori probabilities, etc.). Furthermore, it is possible to maintain a sharp distinction between its physical and statistical aspects. The former consists only of the correct enumeration of the states of a system and their properties; the latter is a straightforward example of statistical inference.

DOI:https://doi.org/10.1103/PhysRev.106.620