Quantum mechanics anyone? Dozens have been disappointed by UCLA’s administration ineptly standing in the way of Dr. Mike Miller being able to offer his perennial Winter UCLA math class (Ring Theory this quarter), so a few friends and I are putting our informal math and physics group back together.

We’re mounting a study group on quantum mechanics based on Peter Woit‘s Introduction to Quantum Mechanics course from 2022. We’ll be using his textbook Quantum Theory, Groups and Representations:An Introduction (free, downloadable .pdf) and his lectures from YouTube.

Shortly, we’ll arrange a schedule and some zoom video calls to discuss the material. If you’d like to join us, send me your email or leave a comment so we can arrange meetings (likely via Zoom or similar video conferencing).

Our goal is to be informal, have some fun, but learn something along the way. The suggested mathematical background is some multi-variable calculus and linear algebra. Many of us already have some background in Lie groups, algebras, and representation theory and can hopefully provide some help for those who are interested in expanding their math and physics backgrounds.

Everyone is welcome! 

Yellow cover of Quantum Theory, Groups and Representations featuring some conic sections in the background

👓 Andrew Jordan reviews Peter Woit’s Quantum Theory, Groups and Representations and finds much to admire. | Inference

Read Woit’s Way by Andrew Jordan (Inference: International Review of Science)
Andrew Jordan reviews Peter Woit's Quantum Theory, Groups and Representations and finds much to admire.
For the tourists, I’ve noted before that Peter maintains a free copy of his new textbook on his website.

I also don’t think I’ve ever come across the journal Inference before, but it looks quite nice in terms of content and editorial.

🔖 Free download of Quantum Theory, Groups and Representations: An Introduction by Peter Woit

Bookmarked Final Draft of Quantum Theory, Groups and Representations: An Introduction by Peter Woit (Not Even Wrong | math.columbia.edu)
Peter Woit has just made the final draft (dated 10/25/16) of his new textbook Quantum Theory, Groups and Representations: An Introduction freely available for download from his website. It covers quantum theory with a heavy emphasis on groups and representation theory and “contains significant amounts of material not well-explained elsewhere.” He expects to finish up the diagrams and publish it next year some time, potentially through Springer.

I finally have finished a draft version of the book that I’ve been working on for the past four years or so. This version will remain freely available on my website here. The plan is to get professional illustrations done and have the book published by Springer, presumably appearing in print sometime next year. By now it’s too late for any significant changes, but comments, especially corrections and typos, are welcome.

At this point I’m very happy with how the book has turned out, since I think it provides a valuable point of view on the relation between quantum mechanics and mathematics, and contains significant amounts of material not well-explained elsewhere.

Peter Woit (), theoretical physicist, mathematician, professor Department of Mathematics, Columbia University
in Final Draft Version | Not Even Wrong

 

Peter Webb’s A Course in Finite Group Representation Theory

Bookmarked A Course in Finite Group Representation Theory by Peter WebbPeter Webb (math.umn.edu)
Download a pre-publication version of the book which will be published by Cambridge University Press. The book arises from notes of courses taught at the second year graduate level at the University of Minnesota and is suitable to accompany study at that level.

“Why should we want to know about representations over rings that are not fields of characteristic zero? It is because they arise in many parts of mathematics. Group representations appear any time we have a group of symmetries where there is some linear structure present, over some commutative ring. That ring need not be a field of characteristic zero.

Here are some examples.

  • […]
  • In the theory of error-correcting codes many important codes have a non-trivial symmetry group and are vector spaces over a finite field, thereby providing a representation of the group over that field.”
Peter Webb, February 23, 2016, Professor of Mathematics, University of Minnesota
in A Course in Finite Group Representation Theory to be published soon by Cambridge University Press