Andrew Jordan reviews Peter Woit's Quantum Theory, Groups and Representations and finds much to admire.
I also don’t think I’ve ever come across the journal Inference before, but it looks quite nice in terms of content and editorial.
Andrew Jordan reviews Peter Woit's Quantum Theory, Groups and Representations and finds much to admire.
I also don’t think I’ve ever come across the journal Inference before, but it looks quite nice in terms of content and editorial.
To be published by Cambridge University Press in April 2018.
Upon publication this book will be available for purchase through Cambridge University Press and other standard distribution channels. Please see the publisher's web page to pre-order the book or to obtain further details on its publication date.
A draft, pre-publication copy of the book can be found below. This draft copy is made available for personal use only and must not be sold or redistributed.
This largely self-contained book on the theory of quantum information focuses on precise mathematical formulations and proofs of fundamental facts that form the foundation of the subject. It is intended for graduate students and researchers in mathematics, computer science, and theoretical physics seeking to develop a thorough understanding of key results, proof techniques, and methodologies that are relevant to a wide range of research topics within the theory of quantum information and computation. The book is accessible to readers with an understanding of basic mathematics, including linear algebra, mathematical analysis, and probability theory. An introductory chapter summarizes these necessary mathematical prerequisites, and starting from this foundation, the book includes clear and complete proofs of all results it presents. Each subsequent chapter includes challenging exercises intended to help readers to develop their own skills for discovering proofs concerning the theory of quantum information.
John Watrous's excellent quantum book just came out. It's still available free on his webpage: https://t.co/D2rr5FTly6
— michael_nielsen (@michael_nielsen) April 28, 2018
The main purpose of this blog is to share updates about the open-access, open-source textbook Understanding Linear Algebra. Though work is continuing on this project, the HTML version of the text is now freely available, the forthcoming PDF version will also be free, and low-cost print options will be provided. The PreTeXt source code will be posted on GitHub as well.
My awesome colleague @davidaustinm is unveiling his new, open-source linear algebra text at the JMM, but you can access it NOW at his (new!) blog, the aptly named "More Linear Algebra": https://t.co/AAreqGk8DW
— Robert Talbert (@RobertTalbert) January 9, 2018
Prior to the first part of the course, I’d written some thoughts about the timbre and tempo of his lecture style and philosophy and commend those interested to take a peek. I also mentioned some additional resources for the course there as well. For those who missed the first portion, I’m happy to help fill you in and share some of my notes if necessary. The recommended minimum prerequisites for this class are linear algebra and some calculus.
Math X 450.7 / 3.00 units / Reg. # 251580W
Professor: Michael Miller, Ph.D.
Start Date: January 13, 2015
Location: UCLA, 5137 Math Sciences Building
Tuesday, 7-10pm
January 13 – March 24
11 meetings total
Class will not meet on one Tuesday to be annouced.
Register here: https://www.uclaextension.edu/Pages/Course.aspx?reg=251580
A Lie group is a differentiable manifold that is also a group for which the product and inverse maps are differentiable. A Lie algebra is a vector space endowed with a binary operation that is bilinear, alternating, and satisfies the so-called Jacobi identity. This course is the second in a 2-quarter sequence that offers an introductory survey of Lie groups, their associated Lie algebras, and their representations. Its focus is split between continuing last quarter’s study of matrix Lie groups and their representations and reconciling this theory with that for the more general manifold setting. Topics to be discussed include the Weyl group, complete reducibility, semisimple Lie algebras, root systems, and Cartan subalgebras. This is an advanced course, requiring a solid understanding of linear algebra, basic analysis, and, ideally, the material from the previous quarter.Internet access required to retrieve course materials.
Hall, Brian. Lie Groups, Lie Algebras, & Representations (Springer, 2004) ISBN: 9781441923134
As many may know or have already heard, Dr. Mike Miller, a retired mathematician from RAND and long-time math professor at UCLA, is offering a course on Introduction to Lie Groups and Lie Algebras this fall through UCLA Extension. Whether you’re a professional mathematician, engineer, physicist, physician, or even a hobbyist interested in mathematics you’ll be sure to get something interesting out of this course, not to mention the camaraderie of 20-30 other “regulars” with widely varying backgrounds (actors to surgeons and evolutionary theorists to engineers) who’ve been taking almost everything Mike has offered over the years (and yes, he’s THAT good — we’re sure you’ll be addicted too.)
Even if it’s been years since you last took Calculus or Linear Algebra, Mike (and the rest of the class) will help you get quickly back up to speed to delve into what is often otherwise a very deep subject. If you’re interested in advanced physics, quantum mechanics, quantum information or string theory, this is one of the topics that is de rigueur for delving in deeply and being able to understand them better. The topic is also one near and dear to the hearts of those in robotics, graphics, 3-D modelling, gaming, and areas utilizing multi-dimensional rotations. And naturally, it’s simply a beautiful and elegant subject for those who have no need to apply it to anything, but who just want to meander their way through higher mathematics for the fun of it (this will comprise the largest majority of the class by the way.)
Whether you’ve been away from serious math for decades or use it every day or even if you’ve never gone past Calculus or Linear Algebra, this is bound to be the most entertaining thing you can do with your Tuesday nights in the fall. If you’re not sure what you’re getting into (or are scared a bit by the course description), I highly encourage to come and join us for at least the first class before you pass up on the opportunity. I’ll mention that the greater majority of new students to Mike’s classes join the ever-growing group of regulars who take almost everything he teaches subsequently. (For the reticent, I’ll mention that one of the first courses I took from Mike was Algebraic Topology which generally requires a few semesters of Abstract Algebra and a semester of Topology as prerequisites. I’d taken neither of these prerequisites, but due to Mike’s excellent lecture style and desire to make everything comprehensible, I was able to do exceedingly well in the course.) I’m happy to chat with those who may be reticent. Also keep in mind that you can register to take the class for a grade, pass/fail, or even no grade at all to suit your needs/lifestyle.
As a group, some of us have a collection of a few dozen texts in the area which we’re happy to loan out as well. In addition to the one recommended text (Mike always gives such comprehensive notes that any text for his classes is purely supplemental at best), several of us have also found some good similar texts:
Given the breadth and diversity of the backgrounds of students in the class, I’m sure Mike will spend some reasonable time at the beginning [or later in the class, as necessary] doing a quick overview of some linear algebra and calculus related topics that will be needed later in the quarter(s).
Further information on the class and a link to register can be found below. If you know of others who might be interested in this, please feel free to forward it along – the more the merrier.
I hope to see you all soon.
MATH X 450.6 / 3.00 units / Reg. # 249254W
Professor: Michael Miller, Ph.D.
Start Date: 9/30/2014
Location UCLA: 5137 Math Sciences Building
Tuesday, 7-10pm
September 30 – December 16, 2014
11 meetings total (no mtg 11/11)
Register here: https://www.uclaextension.edu/Pages/Course.aspx?reg=249254
A Lie group is a differentiable manifold that is also a group for which the product and inverse maps are differentiable. A Lie algebra is a vector space endowed with a binary operation that is bilinear, alternating, and satisfies the so-called Jacobi identity. This course, the first in a 2-quarter sequence, is an introductory survey of Lie groups, their associated Lie algebras, and their representations. This first quarter will focus on the special case of matrix Lie groups–including general linear, special linear, orthogonal, unitary, and symplectic. The second quarter will generalize the theory developed to the case of arbitrary Lie groups. Topics to be discussed include compactness and connectedness, homomorphisms and isomorphisms, exponential mappings, the Baker-Campbell-Hausdorff formula, covering groups, and the Weyl group. This is an advanced course, requiring a solid understanding of linear algebra and basic analysis.
Hall, Brian. Lie Groups, Lie Algebras, & Representations (Springer, 2004) ISBN: 9781441923134