Prior to the first part of the course, I’d written some thoughts about the timbre and tempo of his lecture style and philosophy and commend those interested to take a peek. I also mentioned some additional resources for the course there as well. For those who missed the first portion, I’m happy to help fill you in and share some of my notes if necessary. The recommended minimum prerequisites for this class are linear algebra and some calculus.
Introduction to Lie Groups and Lie Algebras (Part 2)
Math X 450.7 / 3.00 units / Reg. # 251580W
Professor: Michael Miller, Ph.D.
Start Date: January 13, 2015
Location: UCLA, 5137 Math Sciences Building
Tuesday, 7-10pm
January 13 – March 24
11 meetings total
Class will not meet on one Tuesday to be annouced.
Register here: https://www.uclaextension.edu/Pages/Course.aspx?reg=251580
Course Description
A Lie group is a differentiable manifold that is also a group for which the product and inverse maps are differentiable. A Lie algebra is a vector space endowed with a binary operation that is bilinear, alternating, and satisfies the so-called Jacobi identity. This course is the second in a 2-quarter sequence that offers an introductory survey of Lie groups, their associated Lie algebras, and their representations. Its focus is split between continuing last quarter’s study of matrix Lie groups and their representations and reconciling this theory with that for the more general manifold setting. Topics to be discussed include the Weyl group, complete reducibility, semisimple Lie algebras, root systems, and Cartan subalgebras. This is an advanced course, requiring a solid understanding of linear algebra, basic analysis, and, ideally, the material from the previous quarter.Internet access required to retrieve course materials.
Recommended Textbook
Hall, Brian. Lie Groups, Lie Algebras, & Representations (Springer, 2004) ISBN: 9781441923134