Energy and Matter at the Origins of Life by Nick Lane | Santa Fe Institute

Energy and Matter at the Origin of Life by Nick Lane (Santa Fe Institute Community Event (YouTube))
All living things are made of cells, and all cells are powered by electrochemical charges across thin lipid membranes — the ‘proton motive force.’ We know how these electrical charges are generated by protein machines at virtually atomic resolution, but we know very little about how membrane bioenergetics first arose. By tracking back cellular evolution to the last universal common ancestor and beyond, scientist Nick Lane argues that geologically sustained electrochemical charges across semiconducting barriers were central to both energy flow and the formation of new organic matter — growth — at the very origin of life. Dr. Lane is a professor of evolutionary biochemistry in the Department of Genetics, Evolution and Environment at University College London. His research focuses on how energy flow constrains evolution from the origin of life to the traits of complex multicellular organisms. He is a co-director of the new Centre for Life’s Origins and Evolution (CLOE) at UCL, and author of four celebrated books on life’s origins and evolution. His work has been recognized by the Biochemical Society Award in 2015 and the Royal Society Michael Faraday Prize in 2016.

h/t Santa Fe Institute

Syndicated copies to:

The Chemical Basis of Morphogenesis by Alan Turing

a tweet by Michael Nielsen (Twitter)

Looks like Alan Turing, like Claude Shannon, was interested in microbiology too! I’ll have to dig into this. [pdf]

👓 A 2017 Nobel laureate says he left science because he ran out of money and was fed up with academia | QZ

A 2017 Nobel laureate left science because he ran out of money (Quartz)
Jeffrey Hall, a retired professor at Brandeis University, shared the 2017 Nobel Prize in medicine for discoveries elucidating how our internal body clock works. He was honored along with Michael Young and his close collaborator Michael Roshbash. Hall said in an interview from his home in rural Maine that he collaborated with Roshbash because they shared...

This is an all-too-often heard story. The difference is that now a Nobel Prize winner is telling it about himself!

Syndicated copies to:

SFI and ASU to offer online M.S. in Complexity | Complexity Explorer

SFI and ASU to offer online M.S. in Complexity (Complexity Explorer)
SFI and Arizona State University soon will offer the world’s first comprehensive online master’s degree in complexity science. It will be the Institute’s first graduate degree program, a vision that dates to SFI’s founding. “With technology, a growing recognition of the value of online education, widespread acceptance of complexity science, and in partnership with ASU, we are now able to offer the world a degree in the field we helped invent,” says SFI President David Krakauer, “and it will be taught by the very people who built it into a legitimate domain of scholarship.”
Syndicated copies to:

🔖 Self-Organized Resonance during Search of a Diverse Chemical Space

Self-Organized Resonance during Search of a Diverse Chemical Space by Tal Kachman, Jeremy A. Owen, and Jeremy L. England (Physical Review Letters)
ABSTRACT Recent studies of active matter have stimulated interest in the driven self-assembly of complex structures. Phenomenological modeling of particular examples has yielded insight, but general thermodynamic principles unifying the rich diversity of behaviors observed have been elusive. Here, we study the stochastic search of a toy chemical space by a collection of reacting Brownian particles subject to periodic forcing. We observe the emergence of an adaptive resonance in the system matched to the drive frequency, and show that the increased work absorption by these resonant structures is key to their stabilization. Our findings are consistent with a recently proposed thermodynamic mechanism for far-from-equilibrium self-organization.

Suggested by First Support for a Physics Theory of Life in Quanta Magazine.

Syndicated copies to:

📺 A Universal Theory of Life: Math, Art & Information by Sara Walker

A Universal Theory of Life: Math, Art & Information by Sara Walker from TEDxASU
Dr. Walker introduces the concept of information, then proposes that information may be a necessity for biological complexity in this thought-provoking talk on the origins of life. Sara is a theoretical physicist and astrobiologist, researching the origins and nature of life. She is particularly interested in addressing the question of whether or not “other laws of physics” might govern life, as first posed by Erwin Schrodinger in his famous book What is life?. She is currently an Assistant Professor in the School of Earth and Space Exploration and Beyond Center for Fundamental Concepts in Science at Arizona State University. She is also Fellow of the ASU -Santa Fe Institute Center for Biosocial Complex Systems, Founder of the astrobiology-themed social website SAGANet.org, and is a member of the Board of Directors of Blue Marble Space. She is active in public engagement in science, with recent appearances on “Through the Wormhole” and NPR’s Science Friday.

Admittedly, she only had a few short minutes, but it would have been nice if she’d started out with a precise definition of information. I suspect the majority of her audience didn’t know the definition with which she’s working and it would have helped focus the talk.

Her description of Speigelman’s Monster was relatively interesting and not very often seen in much of the literature that covers these areas.

I wouldn’t rate this very highly as a TED Talk as it wasn’t as condensed and simplistic as most, nor was it as hyper-focused, but then again condensing this area into 11 minutes is far from simple task. I do love that she’s excited enough about the topic that she almost sounds a little out of breath towards the end.

There’s an excellent Eddington quote I’ve mentioned before that would have been apropos to have opened up her presentation that might have brought things into higher relief given her talk title:

Suppose that we were asked to arrange the following in two categories–

distance, mass, electric force, entropy, beauty, melody.

I think there are the strongest grounds for placing entropy alongside beauty and melody and not with the first three.

Sir Arthur Stanley Eddington, OM, FRS (1882-1944), a British astronomer, physicist, and mathematician
in The Nature of the Physical World, 1927

 

Syndicated copies to:

🔖 The hidden simplicity of biology by Paul C W Davies and Sara Imari Walker | Reports on Progress in Physics

The hidden simplicity of biology by Paul C W Davies and Sara Imari Walker (Reports on Progress in Physics)
Life is so remarkable, and so unlike any other physical system, that it is tempting to attribute special factors to it. Physics is founded on the assumption that universal laws and principles underlie all natural phenomena, but is it far from clear that there are 'laws of life' with serious descriptive or predictive power analogous to the laws of physics. Nor is there (yet) a 'theoretical biology' in the same sense as theoretical physics. Part of the obstacle in developing a universal theory of biological organization concerns the daunting complexity of living organisms. However, many attempts have been made to glimpse simplicity lurking within this complexity, and to capture this simplicity mathematically. In this paper we review a promising new line of inquiry to bring coherence and order to the realm of biology by focusing on 'information' as a unifying concept.

Downloadable free copy available on ResearchGate.

Syndicated copies to:

🔖 The “Hard Problem” of Life by Sara Imari Walker & Paul C.W. Davies

The "Hard Problem" of Life by Sara Imari Walker, Paul C.W. Davies (arXiv)
Chalmer's famously identified pinpointing an explanation for our subjective experience as the "hard problem of consciousness". He argued that subjective experience constitutes a "hard problem" in the sense that its explanation will ultimately require new physical laws or principles. Here, we propose a corresponding "hard problem of life" as the problem of how `information' can affect the world. In this essay we motivate both why the problem of information as a causal agent is central to explaining life, and why it is hard - that is, why we suspect that a full resolution of the hard problem of life will, similar to as has been proposed for the hard problem of consciousness, ultimately not be reducible to known physical principles. Comments: To appear in "From Matter to Life: Information and Causality". S.I. Walker, P.C.W. Davies and G.F.R. Ellis (eds). Cambridge University Press
Syndicated copies to:

🔖 The Algorithmic Origins of Life – Sara Walker (SETI Talks)

The Algorithmic Origins of Life by Sara I. Walker (SETI Institute Talks)
The origin of life is arguably one of the greatest unanswered questions in science. A primary challenge is that without a proper definition for life -- a notoriously challenging problem in its own right -- the problem of how life began is not well posed. Here we propose that the transition from non-life to life may correspond to a fundamental shift in causal structure, where information gains direct, and context-dependent, causal efficacy over matter, a transition that may be mapped to a nontrivial distinction in how living systems process information. Dr. Walker will discuss potential measures of such a transition, which may be amenable to laboratory study, and how the proposed mechanism corresponds to the onset of the unique mode of (algorithmic) information processing characteristic of living systems.
Syndicated copies to:

🔖 Origins of Life: A Problem for Physics

Origins of Life: A Problem for Physics by Sara I. Walker (arXiv)
The origins of life stands among the great open scientific questions of our time. While a number of proposals exist for possible starting points in the pathway from non-living to living matter, these have so far not achieved states of complexity that are anywhere near that of even the simplest living systems. A key challenge is identifying the properties of living matter that might distinguish living and non-living physical systems such that we might build new life in the lab. This review is geared towards covering major viewpoints on the origin of life for those new to the origin of life field, with a forward look towards considering what it might take for a physical theory that universally explains the phenomenon of life to arise from the seemingly disconnected array of ideas proposed thus far. The hope is that a theory akin to our other theories in fundamental physics might one day emerge to explain the phenomenon of life, and in turn finally permit solving its origins.
Syndicated copies to:

📖 Read pages 51-68 of Complexity and the Economy by W. Brian Arthur

📖 Read pages 51-68 of Complexity and the Economy by W. Brian Arthur

Complexity and the Economy by W. Brian Arthur

An interesting reference to the origin of life and some related research actually pops up in the discussion!

📖 Read pages 43-51 of Complexity and the Economy by W. Brian Arthur

📖 Read pages 43-51 of Complexity and the Economy by W. Brian Arthur

page 45

literally, as in Keynes’ (1936) phrase, taking into account “what average opinion expects the average opinion to be.”

page 46

…perfect rationality in the market cannot be well defined. Infinitely intelligent agents cannot form expectations in a determinate way.

This type of behavior–coming up with appropriate hypothetical models to act upon, strengthening confidence in those that are validated, and discarding those that are not–is called inductive reasoning.

page 47

We see immediately that the market possesses a psychology. We define this as the collection of market hypotheses, or expectational models or mental beliefs, that are being acted upon at a given time.

page 48
the first(?) mention of a genetic model in the book

Complexity and the Economy by W. Brian Arthur

🔖 Proceedings of the Artificial Life Conference 2016

Proceedings of the Artificial Life Conference 2016 by Carlos Gershenson, Tom Froese, Jesus M. Siqueiros, Wendy Aguilar, Eduardo J. Izquierdo and Hiroki Sayama (The MIT Press)
The ALife conferences are the major meeting of the artificial life research community since 1987. For its 15th edition in 2016, it was held in Latin America for the first time, in the Mayan Riviera, Mexico, from July 4 -8. The special them of the conference: How can the synthetic study of living systems contribute to societies: scientifically, technically, and culturally? The goal of the conference theme is to better understand societies with the purpose of using this understanding for a more efficient management and development of social systems.

Free download available.

Proceedings of the Artificial Life Conference 2016

Syndicated copies to:

🎧 Changing Global Diets: the website | Eat This Podcast

Changing Global Diets: the website by Jeremy Cherfas from Eat This Podcast
A fascinating tool for exploring how, where and when diets evolve. Foodwise, what unites Cameroon, Nigeria and Grenada? How about Cape Verde, Colombia and Peru? As of today, you can visit a website to find out. The site is the brainchild of Colin Khoury and his colleagues, and is intended to make it easier to see the trends hidden within 50 years of annual food data from more than 150 countries. If that rings a bell, it may be because you heard the episode around three years ago, in which Khoury and I talked about the massive paper he and his colleagues had published on the global standard diet. Back then, the researchers found it easy enough to explain the overall global trends that emerged from the data, but more detailed questions – about particular crops, or countries, or food groups – were much more difficult to answer. The answer to that one? An interactive website.

Subscribe: iTunes | Android | RSS | More
Support this podcast: on Patreon


While this seems a short and simple episode with some engaging conversation, it’s the podcast equivalent of the floating duck–things appear smooth and calm on the surface, but the duck is paddling like the devil underneath the surface. The Changing Global Diet website is truly spectacular and portends to have me losing a day’s worth of work or more over the next few days.

Some of the data compilation here as well as some of the visualizations are reminiscent to me of some of César A. Hidalgo’s work at the MIT Media Lab on economic complexity and even language which I’ve briefly mentioned before or bookmarked.[1][2]

I’d be curious to see what some of the data overlays between and among some of these projects looked like and what connections they might show. I suspect that some of the food diversity questions may play into the economic complexities that countries exhibit as well.

If there were longer term data over the past 10,000+ years to make this a big history and food related thing, that would be phenomenal too, though I suspect that there just isn’t enough data to make a longer time line truly useful.

References

[1]
D. Hartmann, M. R. Guevara, C. Jara-Figueroa, M. Aristarán, and C. A. Hidalgo, “Linking Economic Complexity, Institutions, and Income Inequality,” World Development, vol. 93. Elsevier BV, pp. 75–93, May-2017 [Online]. Available: http://dx.doi.org/10.1016/j.worlddev.2016.12.020
[2]
S. Ronen, B. Gonçalves, K. Z. Hu, A. Vespignani, S. Pinker, and C. A. Hidalgo, “Links that speak: The global language network and its association with global fame,” Proceedings of the National Academy of Sciences, vol. 111, no. 52. Proceedings of the National Academy of Sciences, pp. E5616–E5622, 15-Dec-2014 [Online]. Available: http://dx.doi.org/10.1073/pnas.1410931111
Syndicated copies to:

🔖 Complex Networks & Their Applications V

Complex Networks & Their Applications V: Proceedings of the 5th International Workshop on Complex Networks and their Applications by Hocine Cherifi, Sabrina Gaito, Walter Quattrociocchi, Alessandra Sala (Springer)
This book highlights cutting-edge research in the field of network science, offering scientists, researchers and graduate students a unique opportunity to catch up on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the fifth International Workshop on Complex Networks & their Applications (COMPLEX NETWORKS 2016), which took place in Milan during the last week of November 2016. The carefully selected papers are divided into 11 sections reflecting the diversity and richness of research areas in the field. More specifically, the following topics are covered: Network models; Network measures; Community structure; Network dynamics; Diffusion, epidemics and spreading processes; Resilience and control; Network visualization; Social and political networks; Networks in finance and economics; Biological and ecological networks; and Network analysis. DOI: 10.1007/978-3-319-50901-3; Part of the Studies in Computational Intelligence book series (SCI, volume 693)

Book cover of Complex Networks and Their Applications V

Syndicated copies to: