Highlights, Quotes, Annotations, & Marginalia from Linked: The New Science Of Network by Albert-László Barabási

Annotated Linked: The New Science Of Networks by Albert-László Barabási (Perseus Books Group)

Highlights, Quotes, Annotations, & Marginalia

Guide to highlight colors

Yellow–general highlights and highlights which don’t fit under another category below
Orange–Vocabulary word; interesting and/or rare word
Green–Reference to read
Blue–Interesting Quote
Gray–Typography Problem
Red–Example to work through

The First Link: Introduction

…the high barriers to becoming a Christian had to be abolished. Circumcision and the strict food laws had to be relaxed.

Highlight (yellow) – page 4

make it easier to create links!

The Second Link: The Random Universe

But when you add enough links such that each node has an average of one link, a miracle happens: A unique giant cluster emerges.

Highlight (yellow) – page 17

Random network theory tells us that as the average number of links per node increases beyond the critical one, the number of nodes left out of the giant cluster decreases exponentially.

Highlight (yellow) – page 19

If the network is large, despite the links’ completely random placement, almost all nodes will have approximately the same number of links.

Highlight (yellow) – page 22

seminal 1959 paper of Erdős and Rényi to bookmark

Highlight (green) – page 23

“On Random Graphs. I” (PDF). Publicationes Mathematicae. 6: 290–297.

The Third Link: Six Degrees of Separation

In Igy irtok ti, or This is How You Write, Frigyes Karinthy

Highlight (yellow) – page 25

But there is one story, entitled “Lancszemek,” or “Chains,” that deserves our attention

Highlight (yellow) – page 26

Karinthy’s 1929 insight that people are linked by at most five links was the first published appearance of the concept we know today as “six degrees of separation.”

Highlight (yellow) – page 27

He [Stanley Milgram] did not seem to have been aware of the body of work on networks in graph theory and most likely had never heard of Erdős and Rényi. He is known to have been influenced by the work of Ithel de Sole Pool of MIT and Manfred Kochen of IBM, who circulated manuscripts about the small world problem within a group of colleagues for decades without publishing them, because they felt they had never “broken the back of the problem.”

Highlight (yellow) – page 36

Think about the small world problem of published research.

We don’t have a social search engine so we may never know the real number with total certainty.

Highlight (yellow) – page 39

Facebook has fixed this in the erstwhile. As of 2016 it’s down to 3.57 degrees of separation

social network

Highlight (orange) – page 40

google the n-gram of this word to see it’s incidence over time. How frequent was it when this book was written? It was apparently a thing beginning in the mid 1960’s.

The Fourth Links: Small Worlds

Mark Newman, a physicist at the Santa Fe Institute… had already written several papers on small worlds that are now considered classics.

Highlight (yellow) – page 49

Therefore, Watts and Strogatz’s most important discovery is that clustering does not stop at the boundary of social networks.

Highlight (yellow) – page 50

To explain the ubiquity of clustering in most real networks, Watts and Strogatz offered an alternative to Erdős and Rényi’s random network model in their 1998 study published in Nature.

Highlight (green) – page 51

Watts, D. J.; Strogatz, S. H. (1998). “Collective dynamics of ‘small-world’ networks” (PDF). Nature. 393 (6684): 440–442. Bibcode:1998Natur.393..440W. doi:10.1038/30918. PMID 9623998

The Fifth Link: Hubs and Connectors

The most intriguing result of our Web-mapping project was the complete absence of democracy, fairness, and egalitarian values on the Web. We learned that the topology of the Web prevents us from seeing anything but a mere handful of the billion documents out there.

Highlight (yellow) – page 56

Do Facebook and Twitter subvert some of this effect? What types of possible solutions could this give to the IndieWeb for social networking models with healthier results?

On the Web, the measure of visibility is the number of links. The more incoming links pointing to your Webpage, the more visible it is. […] Therefore, the liklihood that a typical document links to your Webpage is close to zero.

Highlight (yellow) – page 57

The hubs are the strongest argument against the utopian vision of an egalitarian cyberspace. […] In a collective manner, we somehow create hubs, Websites to which everyone links. They are very easy to find, no matter where you are on the Web. Compared to these hubs, the rest of the Web is invisible.

Highlight (yellow) – page 58

Every four years the United States inaugurates a new social hub–the president.

Highlight (yellow) – page 63
The Sixth Link: The 80/20 Rule

But every time an 80/20 rule truly applies, you can bet that there is a power law behind it. […] Power laws rarely emerge in systems completely dominated bya roll of the dice. Physicists have learned that most often they signal a transition from disorder to order.

Highlight (yellow) – page 72

If the disorder to order is the case, then what is the order imposed by earthquakes which apparently work on a power law distribution?

Leo Kadanoff, a physicist at the University of Illinois at Urbana, had a sudden insight: In the vicinity of the critical point we need to stop viewing atoms separately. Rather, they should be considered communities that act in unison. Atoms must be replaced by boxes of atoms such that within each box all atoms behave as one.

Highlight (yellow) – page 75

#phase transitions

Kenneth Wilson […] submitted simultaneously on June 2, 1971, and published in November of the same year by Physical Review B, turned statistical physics around. The proposed an elegant and all-encompassing theory of phase transitions. Wilson took the scaling ideas developed by Kadanoff and molded them into a powerful theory called renormalization. The starting point of his approach was scale invariance: He assumed that in the vicinity of the critical point the laws of physics applied in an identical manner at all scales, from single atoms to boxes containing millions of identical atoms acting in unison. By giving rigorous mathematical foundation to scale invariance, his theory spat out power laws each time he approached the critical point, the place where disorder makes room for order.

Highlight (yellow) – page 76-77
The Seventh Link: Rich Get Richer

The random model of Erdős and Rényi rests on two simple and often disregarded assumptions. First, we start with an inventory of nodes. Having all the nodes available from the beginning, we assume that the number of nodes is fixed and remains unchanged throughout the network’s life. Second, all nodes are equivalent. Unable to distinguish between the nodes, we link them randomly to each other. These assumptions were unquestioned in over forty years of network research.

Highlight (yellow) – page 81

Both in the Erdős-Rényi and Watts-Strogatz models assumed that we have a fixed number of nodes that are wired together in some clever way. The networks generated by these models are therefore static, meaning that the number of nodes remains unchanged during the network’s life. In contrast, our examples suggested that for real networks the static hypothesis is not appropriate. Instead, we should incorporate growth into our network models.

Highlight (yellow) – page 83

It demonstrated, however, that growth alone cannot explain the emergence of power laws.

Highlight (yellow) – page 84

They are hubs. The better known they are, the more links point to them. The more links they attract, the easier it is to find them on the Web and so the more familiar we are with them. […] The bottom line is that when deciding where to link on the Web, we follow preferential attachment: When choosing between two pages, one with twice as many links as the other, about twice as many people link to the more connected page. While our individual choices are highly unpredictable, as a group we follow strict patterns.

Highlight (yellow) – page 85

The model is very simple, as growth and preferential attachment lead to an algorithm defined by two straightforward rules:
A. Growth: For each given period of time we add a new node to the network. This step underscores the fact that networks are assembled one node at a time.
B. Preferential attachment: We assume that each new node connects to the existing nodes with two links. The probability that it will chose a given node is proportional to the numver of links the chosen node has. That is, given the choice between two nodes, one with twice as many links as the other, it is twice as likely that the new node will connect to the more connected node.

Highlight (yellow) – page 86

The how and why remain for each are of application though.

In Hollywood, 94 percent of links are internal, formed when two established actors work together for the first time.

Highlight (yellow) – page 89

These shifts in thinking created a set of opposites: static versus growing, random versus scale-free, structure versus evolution.
[…] Does the presence of power laws imply that real networks are the result of a phase transition from disorder to order? The answer we’ve arrived at is simple: Networks are not en route from a random to an ordered state. Neither are they at the edge of randomness and chaos. Rather, the scale-free topology is evidence of organizing principles acting at each stage of the network formation process. There is little mystery here, since growth and preferential attachment can explain the basic features of the networks see in nature. No matter how large and complex a network becomes, as long as preferential attachment and growth are present it will maintain its hub-dominated scale-free topology.

Highlight (yellow) – page 91
The Eighth Link: Einstein’s Legacy

The introduction of fitness does not eliminate growth and preferential attachment, the two basic mechanisms governing network evolution. It changes, however, what is considered attractive in a competitive environment. In the scale-free model, we assumed that a node’s attractiveness was determined solely by it’s number of links. In a competitive environment, fitness also plays a role: Nodes with higher fitness are linked to more frequently. A simple way to incorporate fitness into the scal-free model is to assume that preferential attachment is driven by the product of the node’s fitness and the number of links it has. Each new node decides where to link by comparing the fitness connectivity product of all available nodes and linking with a higher probability to those that have a higher product and therefore are more attractive.

Highlight (yellow) – page 96

Bianconi’s calculation s first confirmed our suspicion that in the presence of fitness the early bird is not necessarily the winner. Rather, fitness is in the driver’s seat, making or breaking the hubs.

Highlight (yellow) – page 97

But there was a indeed a precise mathematical mapping between the fitness model of a Bose gas. According to this mapping, each node in the network corresponds to an energy level in the Bose gas.

Highlight (yellow) – page 101

…in some networks, the winner can take all. Just as in a Bose-Einstein condensate all particles crowd into the the lowest energy level, leaving the rest of the energy levels unpopulated, in some networks the fittest node could theoretically grab all the links, leaving none for the rest of the nodes. The winner takes all.

Highlight (yellow) – page 102

But even though each system, from the Web to Hollywood, has a unique fitness distribution, Bianconi’s calculation indicated that in terms of topology all networks fall into one of only two possible categories. […] The first category includes all networks in which, despite the fierce competition for links, the scale-free topology survives. These networks display a fit-get-rich behavior, meaning that the fittest node will inevitably grow to beome the biggest hub. The winner’s lead is never significant, however. The largest hub is closely followed by a smaller one, which acquires almost as many links as the fittest node. Ata any moment we have a hierarchy of nodes whose degree distribution follows a power law. In most complex networks, the power laws and the fight for links thus are not antagonistic but can coexist peacefully.

Highlight (yellow) – page 102

In […] the second category, the winner takes all, meaning tht the fittest node grabs all the links, leaving very little for the rest of the nodes. Such networks develop a star topology. […] A winner-takes-all network is not scale-free.

Highlight (yellow) – page 102
The Ninth Link: Achilles’ Heel

…the western blackout highlighted an often ignored property of complex networks: vulnerability due to interconnectivity

Highlight (yellow) – page 110

Yet, if the number of removed nodes reaches a critical point, the system abruptly breaks into tiny unconnected islands.

Highlight (yellow) – page 112

Computer simulations we performed on networks generated by the scale-free model indicated that a significant fraction of nodes can be randomly removed from any scale-free network without its breaking apart.

Highlight (yellow) – page 113

…percolation theory, the field of physics that developed a set of tools that now are widely used in studies of random networks.

Highlight (yellow) – page 114

…they set out to calculate the fraction of nodes that must be removed from an arbitrarily chosen network, random or scale-free, to break it into pieces. On one hand, their calculation accounted for the well-known result that random networks fall apart after a critical number of nodes have been removed. On the other hand, they found that for scale-free networks the critical threshold disapears in cases where the degree exponent is smaller or equal to three.

Highlight (yellow) – page 114

Disable a few of the hubs and a scale-free network will fall to pieces in no time.

Highlight (yellow) – page 117

If, however, a drug or an illness shuts down the genes encoding the most connected proteins, the cell will not survive.

Highlight (yellow) – page 118

Obviously, the likelihood that a local failure will handicap the whole system is much higher if we perturb the most-connected nodes. This was supported by the findings of Duncan Watts, from Columbia University, who investigated a model designed to capture the generic features of cascading failures, such as power outages, and the opposite phenomenon, the cascading popularity of books, movies, and albums, which can be described within the same framework.

Highlight (yellow) – page 120-121
The Tenth Link: Viruses and Fads

If a new product passes the crucial test of the innovators, based on their recommendation, the early adopters will pick it up.

Highlight (yellow) – page 128

What, if any, role is played by the social network in the spread of a virus or an innovation?

Highlight (yellow) – page 128

In 1954, Elihu Katz, a researcher at the Bureau of Applied Social Research at columbia University, circulated a proposal to study the effect of social ties on behavior.

Highlight (yellow) – page 128

When it came to the spread of tetracyclin, the doctors named by three or more other doctors as friends were three times more likely to adopt the new drug than those who had not been named by anybody.

Highlight (yellow) – page 129

Hubs, often referred to in marketing as “opinion leaders,” “power users,” or “influencers,” are individuals who communicate with more people about a certain product than does the average person.

Highlight (yellow) – page 129

Aiming to explain the disappearance of some fads and viruses and the spread of others, social scientists and epidemiologists developed a very useful tool called the threshold model.

Highlight (yellow) – page 131

any relation to Granovetter?

…critical threshold, a quantity determined by the properties of the network in which the innovation spreads.

Highlight (yellow) – page 131

For decades, a simple but powerful paradigm dominated our treatment of diffusion problems. If we wanted to estimate the probability that an innovation would spread, we needed only to know it’s spreading rate and the critical threshold it faced. Nobody questioned this paradigm. Recently, however, we have learned that some viruses and innovations are oblivious to it.

Highlight (yellow) – page 132

On the Internet, computers are not connected to each other randomly.

Highlight (yellow) – page 135

In scale-free networks the epidemic threshold miraculously vanished!

Highlight (yellow) – page 135

Hubs are among the first infected thanks to their numerous sexual contacts. Once infected, they quickly infect hundreds of others. If our sex web formed a homogeneous, random, network, AIDS might have died out long ago. The scale-free topology at AIDS’s disposal allowed the virus to spread and persist.

Highlight (yellow) – page 138

As we’ve established, hubs play a key role in these processes. Their unique role suggest a bold but cruel solution: As long as resources are finite we should treat only the hubs. That is, when a treatment exists but there is not enough money to offer it to everybody who needs it, we should primarily give it to the hubs. (Pastor-Satorras and Vespignani; and Zoltan Dezso)

Highlight (yellow) – page 139

Are we prepared to abandon the less connected patients for the benefit of the population at large?

Highlight (yellow) – page 140
The Eleventh Link: The Awakening Internet

They [Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos] found that the connectivity distribution of the Internet routers follows a power law. In their seminar paper “On Power-Law Relationship of the Internet Topology” they showed that the Internet […] is a scale-free network.

Highlight (yellow) – page 150

Routers offering more bandwidth likely have more links as well. […] This simple effect is a possible source of preferential attachment. We do not know for sure whether it is the only one, but preferential attachment is unquestionably present on the Internet.

Highlight (yellow) – page 152

After many discussions and tutorials on how computers communicate, a simple but controversial idea emerged: parasitic computing.

Highlight (yellow) – page 156
The Twelfth Link: The Fragmented Web

Starting from any page (on the Internet), we can reach only about 24 percent of all documents.

Highlight (yellow) – page 165

If you want to go from A to D, you can start from node A, then go to node B, which has a link to node C, which points to D. But you can’t make a round-trip.

Highlight (yellow) – page 166

Not necessarily the case with bidirectional webmentions.

[Cass] Sustein fears that by limiting access to conflicting viewpoints, the emerging online universe encourages segregation and social fragmentation. Indeed, the mechanisms behind social and political isolation on the Web are self-reinforcing.

Highlight (yellow) – page 170

Looks like we’ve known this for a very long time! Sadly it’s coming to a head in the political space of 2016 onward.

Communities are essential components of human social history. Granovetter’s circles of friends, the elementary building blocks of communities, pointed to this fact. […]

Highlight (yellow) – page 170

early indications that Facebook could be a thing…

One reason is that there are no sharp boundaries between various communities. Indeed, the same Website can belong simultaneously to different groups. For example, a physicist’s Webpage might mix links to physics, music, and mountain climbing, combining professional interests with hobbies. In which community should we place such a page? The size of communities also varies a lot. For example, while the community interested in “cryptography” is small and relatively easy to locate, the one consisting of devotees of “English literature” is much harder to identify and fragmented into many subcommunities ranging from Shakespeare enghusiasts to Kurt Vonnegut fans.

Highlight (yellow) – page 171

Search for this type of community problem is an NP complete problem. This section may be of interest to Brad Enslen and Kicks Condor. Cross reference research suggested by Gary Flake, Steve Lawrence, and Lee Giles from NEC.

Such differences in the structure of competing communities have important consequences for their ability to market and organize themselves for a common cause.

Highlight (yellow) – page 172

He continues to talk about how the pro-life movement is better connected and therefore better equipped to fight against the pro-choice movement.

Code–or software–is the bricks and mortar of cyberspace. The architecture is what we build, using the code as building blocks. The great architects of human history, from Michelangelo to Frank Lloyd Wright, demonstrated that, whereas raw materials are limited, the architectural possibilities are not. Code can curtail behavior, and it does influence architecture. It does not uniquely determine it, however.

Highlight (yellow) – page 174

Added on November 3, 2018 at 5:26 PM

Yes, we do have free speech on the Web. Chances are, however, that our voices are too weak to be heard. pages with only a few incoming links are impossible to find by casual browsing. Instead, over and over we are steered toward the hubs. It is tempting to believe that robots can avoid this popularity-driven trap.

Highlight (yellow) – page 174

Facebook and Twitter applications? Algorithms help to amplify “unheard” voices to some extent, but gamifying the reading can also get people to read more (crap) than they were reading before because it’s so easy.

Your ability to find my Webpage is determined by one factor only: its position on the Web.

Highlight (yellow) – page 175

Facebook takes advantage of this with their algorithm

Thus the Web’s large-scale topology–that is, its true architecture–enforces more severe limitations on our behavior and visibilityon the Web than government or industry could ever achieve by tinkering with the code. Regulations come and go, but the topology and the fundamental natural laws governing it are time invariant. As long as we continue to delegate to the individual the choice of where to link, we will not be able to significantly alter the Web’s large-scale topology, and we will have to live with the consequences.

Highlight (yellow) – page TK175

hmmm?

After selling Alexa to Amazon.com in 1999

Highlight (yellow) – page 175

Brewster Kahle’s Alexa Internet company is apparently the root of the Amazon Alexa?

The Thirteenth Link: The Map of Life

To return to our car analogy, it is…

Highlight (yellow) – page 181

Where before? I don’t recall this at all. Did it get removed from the text?

Annotation (yellow) – page 183

ref somewhere about here… personalized medicine

After researching the available databases, we settled on a new one, run by the Argonne National Laboratory outside Chicago, nicknamed “What Is There?” which compiled the matabolic network of forty-three diverse organisms.

Highlight (yellow) – page 185

…for the vast majority of organisms the ten most-connected molecules are the same. Adenosine triphosphate (ATP) is almost always the biggest hub, followed closely by adenosine diphosphate (ADP) and water.

Highlight (yellow) – page 186

A key prediction of the scale-free model is that nodes with a large number of links are those that have been added early to the network. in terms of metabolism this would imply that the most connected molecules should be the oldest ones within the cell. […] Therefore, the first mover advantage seems to pervade the emergence of life as well.

Highlight (yellow) – page 186

Comparing the metabolic network of all forty-three organisms, we found that only 4 percent of the molecules appear in all of them.

Highlight (yellow) – page 186

Developed by Stanley Fields in 1989, the two-hybrid method offers a relatively rapid semiautomated technique for detecting protein-protein interactions.

Highlight (yellow) – page 188

They [the results of work by Oltvai, Jeong, Barabasi, Mason (2000)] demonstrated that the protein interaction network has a scale-free topology.

Highlight (yellow) – page 188

…the cell’s scale-free topology is a result of a common mistake cells make while reproducing.

Highlight (yellow) – page 189

In short, it is now clear that the number of genes is not proportional to our perceived complexity.

Highlight (yellow) – page 197
The Fourteenth Link: Network Economy

We have learned that a sparse network of a few powerful directors controls all major appointments in Fortune 1000 companies; […]

Highlight (yellow) – page 200

Regardless of industry and scope, the network behind all twentieth century corporations has the same structure: It is a tree, where the CEO occupies the root and the bifurcating branches represent the increasingly specialized and nonoverlapping tasks of lower-level managers and workers. Responsibility decays as you move down the branches, ending with the drone executors of orders conceived at the roots.

Highlight (yellow) – page 201

Only for completely top down , but what about bottom up or middle out?

We have gotten to the point that we can produce anything that we can dream of. The expensive question now is, what should that be?

Highlight (yellow) – page 201

It is a fundamental rethinking of how to respond to the new business environment in the postindustrial era, dubbed the information economy.

Highlight (orange) – page 201

This is likely late, but certainly an early instance of “information economy” in popular literature.

Therefore, companies aiming to compete in a fast-moving marketplace are shifting from a static and optimized tree into a dynamic and evolving web, offering a more malleable, flexible command structure.

Highlight (yellow) – page 202

While 79 percent of directors serve on only one board, 14 percent serve on two, and about 7 percent serve on three or more.

Highlight (yellow) – page 204

Indeed, the number of companies that entered in partnership with exactly k other institutions, representing the number of links they have within the network, followed a power law, the signature of a scale-free topology.

Highlight (yellow) – page 207

Makes me wonder if the 2008 economic collapse could have been predicted by “weak” links?

As research, innovation, product development, and marketing become more and more specialized and divorced from each other, we are converging to a network economy in which strategic alliances and partnerships are the means for survival in all industries.

Highlight (yellow) – page 208

This is troubling in the current political climate where there is little if any trust or truth being spread around by the leader of the Republican party.

As Walter W. Powell writes in Neither Market nor Hierarchy: Network Forms of Organization, “in markets the standard strategy is to drive the hardest possible bargain on the immediate exchange. In networks, the preferred option is often creating indebtedness and reliance over the long haul.” Therefore, in a network economy, buyers and suppliers are not competitors but partners. The relationship between them is often very long lasting and stable.

Highlight (yellow) – page 208

Trump vs. Trump

The stability of these links allows companies to concentrate on their core business. If these partnerships break down, the effects can be severe. Most of the time failures handicap only the partners of the broken link. Occasionally, however, they send ripples through the whole economy. As we will see next, macroeconomic failures can throw entire nations into deep financial disarray, while failures in corporate partnerships can severly damage the jewels of the new economy.

Highlight (yellow) – page 209

In some sense this predicts the effects of the 2008 downturn.

outsourcing

Highlight (orange) – page 212

early use of the word?

A me attitude, where the companies immediate financial balance is the only factor, limits network thinking. Not understanding how the actions of one node affect other nodes easily cripples whole segments of the network.

Highlight (yellow) – page 212

Hierarchical thinking does not fit a network economy.

Highlight (yellow) – page 213
The Last Link: Web Without a Spider

We must help eliminate the need and desire of the nodes to form links to terrorist organizations by offering them a chance to belong to more constructive and meaningful webs.

Highlight (yellow) – page 214

And for poverty and gangs as well as immigration.

“Their work has a powerful philosophy: “revelation through concealment.” By hiding the details they allow us to focus entirely on the form. The wrapping sharpens our vision, making us more aware and observant, turning ordinary objects into monumental sculptures and architectural pieces.

Highlight (yellow) – page 225

not too dissimilar to the font I saw today for memory improvement

📖 Read pages 79-92 of 288 of Linked: The New Science Of Networks by Albert-László Barabási

📖 Read pages 79-92 of 288 of Linked: The New Science Of Networks by Albert-László Barabási

He’s continuing the evolving story of network research following along some of his own research and that of others. There’s something unsettling or missing here in the jump to preferential attachment. What is causing preferential attachment to occur? This may be a factor of the individual settings in which things are happening, but it feels like a major missing piece from an otherwise organic feeling mathematical/theoretical perspective.

🔖 Some Statistics of Evolution and Geographical Distribution in Plants and Animals, and their Significance by J.C. Willis & Udny Yule | Nature

Bookmarked Some Statistics of Evolution and Geographical Distribution in Plants and Animals, and their Significance by J. C. Willis and G. Udny Yule (Nature volume 109, pages 177–179)
Abstract
IN a paper read at the Linnean Society under the above title on February 2, the statistical methods long employed in “Age and Area” were pushed to their final conclusion. Age and area (review in Ann. of Bot., October, 1921, p. 493) is the name given to a principle gradually discovered in many years of work upon the flora of Ceylon, which, in brief, affirms that if one take groups of not less than ten allied species and compare them with similar groups allied to the first, the relative total areas occupied in a given country, or in the world, will be more or less proportional (whether directly or not we do not yet know) to their relative total ages, within that country or absolutely, as the case may be. The longer a group has existed the more area will it occupy. Tens are compared in order to eliminate chance differences as much as possible, and allied groups to avoid as far as may be the complications introduced by different ecological habit, etc. Herbs, for example, probably spread much more rapidly than trees, but both will obey Age and Area. It is of course obvious that age of itself cannot effect dispersal, but inasmuch as predictions as to distribution of species, occurrence of endemics, etc., can be successfully made upon the basis of age alone, it is clear that the average rate of spreading of a given species, and still more of a group of allied species, is very uniform, and therefore affords a measure of age. The result of the work is to show that in general the species (and genera) of smallest areas are the youngest, and are descended from the more widespread species that usually occur beside them.
h/t Disconnected, fragmented, or united? a trans-disciplinary review of network science by César A. Hidalgo (Applied Network Science | SpringerLink)

👓 Disconnected, fragmented, or united? a trans-disciplinary review of network science | Applied Network Science | César A. Hidalgo

Read Disconnected, fragmented, or united? a trans-disciplinary review of network science by César A. HidalgoCésar A. Hidalgo (Applied Network Science | SpringerLink)
During decades the study of networks has been divided between the efforts of social scientists and natural scientists, two groups of scholars who often do not see eye to eye. In this review I present an effort to mutually translate the work conducted by scholars from both of these academic fronts hoping to continue to unify what has become a diverging body of literature. I argue that social and natural scientists fail to see eye to eye because they have diverging academic goals. Social scientists focus on explaining how context specific social and economic mechanisms drive the structure of networks and on how networks shape social and economic outcomes. By contrast, natural scientists focus primarily on modeling network characteristics that are independent of context, since their focus is to identify universal characteristics of systems instead of context specific mechanisms. In the following pages I discuss the differences between both of these literatures by summarizing the parallel theories advanced to explain link formation and the applications used by scholars in each field to justify their approach to network science. I conclude by providing an outlook on how these literatures can be further unified.

Highlights, Quotes, Annotations, & Marginalia

Social scientists focus on explaining how context specific social and economic mechanisms drive the structure of networks and on how networks shape social and economic outcomes. By contrast, natural scientists focus primarily on modeling network characteristics that are independent of context, since their focus is to identify universal characteristics of systems instead of context specific mechanisms.  

August 25, 2018 at 10:18PM

Science and Complexity (Weaver 1948); explained the three eras that according to him defined the history of science. These were the era of simplicity, disorganized complexity, and organized complexity. In the eyes of Weaver what separated these three eras was the development of mathematical tools allowing scholars to describe systems of increasing complexity.  

August 25, 2018 at 10:19PM

Problems of disorganized complexity are problems that can be described using averages and distributions, and that do not depend on the identity of the elements involved in a system, or their precise patterns of interactions. A classic example of a problem of disorganized complexity is the statistical mechanics of Ludwig Boltzmann, James-Clerk Maxwell, and Willard Gibbs, which focuses on the properties of gases.  

August 25, 2018 at 10:20PM

Soon after Weaver’s paper, biologists like Francois Jacob (Jacob and Monod 1961), (Jacob et al. 1963) and Stuart Kaufmann (Kauffman 1969), developed the idea of regulatory networks. Mathematicians like Paul Erdos and Alfred Renyi, advanced graph theory (Erdős and Rényi 1960) while Benoit Mandelbrot worked on Fractals (Mandelbrot and Van Ness 1968), (Mandelbrot 1982). Economists like Thomas Schelling (Schelling 1960) and Wasily Leontief (Leontief 1936), (Leontief 1936), respectively explored self-organization and input-output networks. Sociologists, like Harrison White (Lorrain and White 1971) and Mark Granovetter (Granovetter 1985), explored social networks, while psychologists like Stanley Milgram (Travers and Milgram 1969) explored the now famous small world problem.   

Some excellent references
August 25, 2018 at 10:24PM

First, I will focus in these larger groups because reviews that transcend the boundary between the social and natural sciences are rare, but I believe them to be valuable. One such review is Borgatti et al. (2009), which compares the network science of natural and social sciences arriving at a similar conclusion to the one I arrived.  

August 25, 2018 at 10:27PM

Links are the essence of networks. So I will start this review by comparing the mechanisms used by natural and social scientists to explain link formation.  

August 25, 2018 at 10:32PM

When connecting the people that acted in the same movie, natural scientists do not differentiate between people in leading or supporting roles.  

But they should because it’s not often the case that these are relevant unless they are represented by the same agent or agency.
August 25, 2018 at 10:51PM

For instance, in the study of mobile phone networks, the frequency and length of interactions has often been used as measures of link weight (Onnela et al. 2007), (Hidalgo and Rodriguez-Sickert 1008), (Miritello et al. 2011).  

And they probably shouldn’t because typically different levels of people are making these decisions. Studio brass and producers typically have more to say about the lead roles and don’t care as much about the smaller ones which are overseen by casting directors or sometimes the producers. The only person who has oversight of all of them is the director, and even then they may quit caring at some point.
August 25, 2018 at 10:52PM

Social scientists explain link formation through two families of mechanisms; one that finds it roots in sociology and the other one in economics. The sociological approach assumes that link formation is connected to the characteristics of individuals and their context. Chief examples of the sociological approach include what I will call the big three sociological link-formation hypotheses. These are: shared social foci, triadic closure, and homophily.  

August 25, 2018 at 10:55PM

The social foci hypothesis predicts that links are more likely to form among individuals who, for example, are classmates, co-workers, or go to the same gym (they share a social foci). The triadic closure hypothesis predicts that links are more likely to form among individuals that share “friends” or acquaintances. Finally, the homophily hypothesis predicts that links are more likely to form among individuals who share social characteristics, such as tastes, cultural background, or physical appearance (Lazarsfeld and Merton 1954), (McPherson et al. 2001).  

definitions of social foci, triadic closure, and homophily within network science.
August 26, 2018 at 11:39AM

Yet, strategic games look for equilibrium in the formation and dissolution of ties in the context of the game theory advanced first by (Von Neumann et al. 2007), and later by (Nash 1950).  

August 25, 2018 at 10:58PM

Preferential attachment is the idea that connectivity begets connectivity.  

August 25, 2018 at 10:59PM

Preferential attachment is an idea advanced originally by the statisticians John Willis and Udny Yule in (Willis and Yule 1922), but has been rediscovered numerous times during the twentieth century.  

August 25, 2018 at 11:00PM

Rediscoveries of this idea in the twentieth century include the work of (Simon 1955) (who did cite Yule), (Merton 1968), (Price 1976) (who studied citation networks), and (Barabási and Albert 1999), who published the modern reference for this model, which is now widely known as the Barabasi-Albert model.  

August 25, 2018 at 11:01PM

preferential attachment. In the eyes of the social sciences, however, understanding which of all of these hypotheses drives the formation of the network is what one needs to explore.  

For example what drives attachment of political candidates?
August 26, 2018 at 08:15AM

Finally it is worth noting that trust, through the theory of social capital, has been connected with long-term economic growth—even though these results are based on regressions using extremely sparse datasets.  

And this is an example of how Trump is hurting the economy.
August 26, 2018 at 08:33AM

Nevertheless, the evidence suggests that social capital and social institutions are significant predictors of economic growth, after controlling for the effects of human capital and initial levels of income (Knack and Keefer 1997), (Knack 2002).4 So trust is a relevant dimension of social interactions that has been connected to individual dyads, network formation, labor markets, and even economic growth.  

August 26, 2018 at 08:35AM

Social scientist, on the other hand, have focused on what ties are more likely to bring in new information, which are primarily weak ties (Granovetter 1973), and on why weak ties bring new information (because they bridge structural holes (Burt 2001), (Burt 2005)).  

August 26, 2018 at 09:45AM

heterogeneous networks have been found to be effective promoters of the evolution of cooperation, since there are advantages to being a cooperator when you are a hub, and hubs tend to stabilize networks in equilibriums where levels of cooperation are high (Ohtsuki et al. 2006), (Pacheco et al. 2006), (Lieberman et al. 2005), (Santos and Pacheco 2005).  

August 26, 2018 at 09:49AM

These results, however, have also been challenged by human experiments finding no such effect (Gracia-Lázaro et al. 2012). The study of cooperation in networks has also been performed in dynamic settings, where individuals are allowed to cut ties (Wang et al. 2012), promoting cooperation, and are faced with different levels of knowledge about the reputation of peers in their network (Gallo and Yan 2015). Moreover, cooperating behavior has seen to spread when people change the networks where they participate in (Fowler and Christakis 2010).  

Open questions
August 26, 2018 at 09:50AM

References

1.
Hidalgo CA. Disconnected, fragmented, or united? a trans-disciplinary review of network science. ANS. 2016;1(1). doi:10.1007/s41109-016-0010-3