Author: Chris Aldrich
🔖 Complex Analysis by Lars Ahlfors
📖 71% done with Carioca Fletch (Fletch #7) by Gregory McDonald
Every gas station should be changed into a pocket park
Introduction to Galois Theory | Coursera
A very beautiful classical theory on field extensions of a certain type (Galois extensions) initiated by Galois in the 19th century. Explains, in particular, why it is not possible to solve an equation of degree 5 or more in the same way as we solve quadratic or cubic equations. You will learn to compute Galois groups and (before that) study the properties of various field extensions. We first shall survey the basic notions and properties of field extensions: algebraic, transcendental, finite field extensions, degree of an extension, algebraic closure, decomposition field of a polynomial. Then we shall do a bit of commutative algebra (finite algebras over a field, base change via tensor product) and apply this to study the notion of separability in some detail. After that we shall discuss Galois extensions and Galois correspondence and give many examples (cyclotomic extensions, finite fields, Kummer extensions, Artin-Schreier extensions, etc.). We shall address the question of solvability of equations by radicals (Abel theorem). We shall also try to explain the relation to representations and to topological coverings. Finally, we shall briefly discuss extensions of rings (integral elemets, norms, traces, etc.) and explain how to use the reduction modulo primes to compute Galois groups.
It’s being offered by National Research University – Higher School of Economics (HSE) in Russia.
[1609.02422] What can logic contribute to information theory?

Logical probability theory was developed as a quantitative measure based on Boole's logic of subsets. But information theory was developed into a mature theory by Claude Shannon with no such connection to logic. But a recent development in logic changes this situation. In category theory, the notion of a subset is dual to the notion of a quotient set or partition, and recently the logic of partitions has been developed in a parallel relationship to the Boolean logic of subsets (subset logic is usually mis-specified as the special case of propositional logic). What then is the quantitative measure based on partition logic in the same sense that logical probability theory is based on subset logic? It is a measure of information that is named "logical entropy" in view of that logical basis. This paper develops the notion of logical entropy and the basic notions of the resulting logical information theory. Then an extensive comparison is made with the corresponding notions based on Shannon entropy.
Based on a cursory look of his website(s), I’m going to have to start following more of this work.
📖 61.0% done with Carioca Fletch (Fletch #7) by Gregory McDonald
The plot seems to have slowed down significantly since the opening, but is just finally getting moving again.
Attending WordCamp Los Angeles

Instagram filter used: Clarendon
Photo taken at: California State University, Los Angeles
📖 34.0% done with Carioca Fletch (Fletch #7) by Gregory McDonald
Shrimp dinner?
Selfie with author Henry James Korn who reveals details about his next novel
Instagram filter used: Lark
Photo taken at: Porta Via
I had lunch today with author Henry James Korn who revealed big chunks of the plot of his upcoming novel Zionista to me. I should be getting a copy of the first draft to read over the weekend, and I can’t wait. It sounds like it continues the genius of his political satire in Amerikan Krazy.
I think I’ve decided who I’m going to vote for
A discussion of Grit at Innovate Pasadena

Instagram filter used: Moon
Photo taken at: Cross Campus Pasadena
Hector Zenil
If you’re not following him everywhere (?) yet, start with some of the sites below (or let me know if I’ve missed anything).
His most recent paper on arXiv:
Low Algorithmic Complexity Entropy-deceiving Graphs | .pdf
A common practice in the estimation of the complexity of objects, in particular of graphs, is to rely on graph- and information-theoretic measures. Here, using integer sequences with properties such as Borel normality, we explain how these measures are not independent of the way in which a single object, such a graph, can be described. From descriptions that can reconstruct the same graph and are therefore essentially translations of the same description, we will see that not only is it necessary to pre-select a feature of interest where there is one when applying a computable measure such as Shannon Entropy, and to make an arbitrary selection where there is not, but that more general properties, such as the causal likeliness of a graph as a measure (opposed to randomness), can be largely misrepresented by computable measures such as Entropy and Entropy rate. We introduce recursive and non-recursive (uncomputable) graphs and graph constructions based on integer sequences, whose different lossless descriptions have disparate Entropy values, thereby enabling the study and exploration of a measure’s range of applications and demonstrating the weaknesses of computable measures of complexity.
Subjects: Information Theory (cs.IT); Computational Complexity (cs.CC); Combinatorics (math.CO)
Cite as: arXiv:1608.05972 [cs.IT] (or arXiv:1608.05972v4 [cs.IT]
YouTube
Yesterday he also posted two new introductory videos to his YouTube channel. There’s nothing overly technical here, but they’re nice short productions that introduce some of his work. (I wish more scientists did communication like this.) I’m hoping he’ll post them to his blog and write a bit more there in the future as well.
Universal Measures of Complexity
Relevant literature:
- A Decomposition Method for Global Evaluation of Shannon Entropy and Local Estimations of Algorithmic Complexity by Hector Zenil, Fernando Soler-Toscano, Narsis A. Kiani, Santiago Hernández-Orozco, Antonio Rueda-Toicen
- Calculating Kolmogorov Complexity from the Output Frequency Distributions of Small Turing Machines by F. Soler-Toscano, H. Zenil, J.-P. Delahaye and N. Gauvrit; PLoS ONE 9(5): e96223, 2014.
- Numerical Evaluation of Algorithmic Complexity for Short Strings: A Glance into the Innermost Structure of Randomness by Jean-Paul Delahaye, Hector Zenil; Applied Mathematics and Computation 219, pp. 63-77, 2012.
Reprogrammable World
Relevant literature:
Cross-boundary Behavioural Reprogrammability Reveals Evidence of Pervasive Turing Universality by Jürgen Riedel, Hector Zenil
Preprint available at http://arxiv.org/abs/1510.01671
Ed.: 9/7/16: Updated videos with links to relevant literature
Randomness And Complexity, from Leibniz To Chaitin | World Scientific Publishing
The book is a collection of papers written by a selection of eminent authors from around the world in honour of Gregory Chaitin s 60th birthday. This is a unique volume including technical contributions, philosophical papers and essays. Hardcover: 468 pages; Publisher: World Scientific Publishing Company (October 18, 2007); ISBN: 9789812770820