Instagram filter used: Normal
Photo taken at: UCLA Math Sciences Building
There’s still plenty of time to join us for the second installment in January!
Instagram filter used: Normal
Photo taken at: UCLA Math Sciences Building
There’s still plenty of time to join us for the second installment in January!
I do know, however, that there were a few who couldn’t make part of the Fall course, but who had some foundation in the subject and wanted to join us for the more advanced portion in the second half. Toward that end, below are the details for the course:
Introduction to Complex Analysis: Part II | MATH X 451.41 – 350370
Course Description
Complex analysis is one of the most beautiful and practical disciplines of mathematics, with applications in engineering, physics, and astronomy, to say nothing of other branches of mathematics. This course, the second in a two-part sequence, builds on last quarter’s development of the differentiation and integration of complex functions to extend the principles to more sophisticated and elegant applications of the theory. Topics to be discussed include conformal mappings, Laurent series and meromorphic functions, Riemann surfaces, Riemann Mapping Theorem, analytical continuation, and Picard’s Theorem. The course should appeal to those whose work involves the application of mathematics to engineering problems, and to those interested in how complex analysis helps explain the structure and behavior of the more familiar real number system and real-variable calculus.
Winter 2017
Days: Tuesdays
Time: 7:00PM to 10:00PM
Dates: Jan 10, 2017 to Mar 28, 2017
Contact Hours: 33.00
Location: UCLA, Math Sciences Building
Course Fee(s): $453.00
Available for Credit: 3 units
Instructors: Michael Miller
No refund after January 24, 2017.
Class will not meet on one Tuesday to be announced.Recommended Textbook: Complex Analysis with Applications by Richard A. Silverman, Dover Publications; ISBN 0-486-64762-5
For many who will register, this certainly won’t be their first course with Dr. Miller–yes, he’s that good! But for the newcomers, I’ve written some thoughts and tips to help them more easily and quickly settle in and adjust: Dr. Michael Miller Math Class Hints and Tips | UCLA Extension
If you’d like additional details as well as lots of alternate textbooks, see the announcement for the first course in the series.
If you missed the first quarter and are interested in the second quarter but want a bit of review or some of the notes, let me know in the comments below.
I look forward to seeing everyone in the Winter quarter!
With these notes, you should be able to toggle the settings in the file to read and listen to the notes almost as if you were attending the class live. I’ve done my best to write everything exactly as it was written on the board and only occasionally added small bits of additional text.
If you haven’t registered yet, you can watch the notes as if you were actually in the class and still join us next Tuesday night without missing a beat. There are over 25 people in the class not counting several I know who had to miss the first session.
Hope to see you then!
Viewing and Playing a Pencast PDF
Pencast PDF is a new format of notes and audio that can play in Adobe Reader X or above.
You can open a Pencast PDF as you would other PDF files in Adobe Reader X. The main difference is that a Pencast PDF can contain ink that has associated audio—called “active ink”. Click active ink to play its audio. This is just like playing a Pencast from Livescribe Online or in Livescribe Desktop. When you first view a notebook page, active ink appears in green type. When you click active ink, it turns gray and the audio starts playing. As audio playback continues, the gray ink turns green in synchronization with the audio. Non-active ink (ink without audio) is black and does not change appearance.
Audio Control Bar
Pencast PDFs have an audio control bar for playing, pausing, and stopping audio playback. The control bar also has jump controls, bookmarks (stars), and an audio timeline control.
Active Ink View Button
There is also an active ink view button. Click this button to toggle the “unwritten” color of active ink from gray to invisible. In the default (gray) setting, the gray words turn green as the audio plays. In the invisible setting, green words seem to write themselves on blank paper as the audio plays.
Course Description
Complex analysis is one of the most beautiful and useful disciplines of mathematics, with applications in engineering, physics, and astronomy, as well as other branches of mathematics. This introductory course reviews the basic algebra and geometry of complex numbers; develops the theory of complex differential and integral calculus; and concludes by discussing a number of elegant theorems, including many–the fundamental theorem of algebra is one example–that are consequences of Cauchy’s integral formula. Other topics include De Moivre’s theorem, Euler’s formula, Riemann surfaces, Cauchy-Riemann equations, harmonic functions, residues, and meromorphic functions. The course should appeal to those whose work involves the application of mathematics to engineering problems as well as individuals who are interested in how complex analysis helps explain the structure and behavior of the more familiar real number system and real-variable calculus.
Prerequisites
Basic calculus or familiarity with differentiation and integration of real-valued functions.
Details
MATH X 451.37 – 268651 Introduction to Complex Analysis
Fall 2016
Time 7:00PM to 10:00PM
Dates Tuesdays, Sep 20, 2016 to Dec 06, 2016
Contact Hours 33.00
Location: UCLA, Math Sciences Building
Standard credit (3.9 units) $453.00
Instructor: Michael Miller
Register Now at UCLA
For many who will register, this certainly won’t be their first course with Dr. Miller — yes, he’s that good! But for the newcomers, I’ve written some thoughts and tips to help them more easily and quickly settle in and adjust:
Dr. Michael Miller Math Class Hints and Tips | UCLA Extension
I often recommend people to join in Mike’s classes and more often hear the refrain: “I’ve been away from math too long”, or “I don’t have the prerequisites to even begin to think about taking that course.” For people in those categories, you’re in luck! If you’ve even had a soupcon of calculus, you’ll be able to keep up here. In fact, it was a similar class exactly a decade ago by Mike Miller that got me back into mathematics. (Happy 10th math anniversary to me!)
I look forward to seeing everyone in the Fall!
Dr. Miller is back from summer vacation and emailed me this morning to say that he’s chosen the textbook for the class. We’ll be using Complex Analysis with Applications by Richard A. Silverman. [1]
(Note that there’s another introductory complex analysis textbook from Silverman that’s offered through Dover, so be sure to choose the correct one.)
As always in Dr. Miller’s classes, the text is just recommended (read: not required) and in-class notes are more than adequate. To quote him directly, “We will be using as a basic guide, but, as always, supplemented by additional material and alternate ways of looking at things.”
The bonus surprise of his email: He’s doing two quarters of Complex Analysis! So we’ll be doing both the Fall and Winter Quarters to really get some depth in the subject!
If you’re like me, you’ll probably take a look at some of the other common (and some more advanced) textbooks in the area. Since I’ve already compiled a list, I’ll share it: