Point-set topology is the branch of mathematics that deals with collections of points endowed with sufficient structure to make meaningful the notions of closeness, separation, and convergence. Beginning with familiar notions concerning open sets, closed sets, and convergence on the real number line and Euclidean plane, this course systematically develops the theory of arbitrary topological spaces. Topics include bases and subbases, separation axioms (Hausdorff, regular, and normal spaces), countability (first- and second-countable spaces), compactness and compactification, connectedness, and convergence (nets and filters). Instruction emphasizes examples and problem solving. The course appeals to those seeking a better understanding of the algebraic and geometric underpinnings of common mathematical constructs.
September 24 - December 3 on Tuesday 7:00PM - 10:00PM PT
Fee: $453.00
Location: UCLA, Math Sciences Building, Room 5127
As usual, there’s no recommended textbook (yet), and he generally provides his own excellent notes over a required textbook. I’d suspect that he’ll recommend an inexpensive Dover Publication text like those of Kahn, Baum, or Gamelin & Greene.
If you’re curious about what’s out there, I’ve already compiled a bibliography of the usual suspects in the space:
- Armstrong, M. A. Basic Topology. Undergraduate Texts in Mathematics, 3.0. Springer, 1983.
- Conover, Robert A. A First Course in Topology: An Introduction to Mathematical Thinking. Reprint. Dover Books on Mathematics. Mineola, N.Y: Dover Publications, Inc., 2014.
- Conway, John B. A Course in Point Set Topology. Undergraduate Texts in Mathematics. Springer, 2015.
- Crossley, Martin D. Essential Topology. Corrected printing. Springer Undergraduate Mathematics Series. 2005. Reprint, Springer, 2010.
- Gaal, Steven A. Point Set Topology. 1st ed. Pure & Applied Mathematics 16. Academic Press, 1964.
- Gamelin, Theodore W., and Robert Everist Greene. Introduction to Topology. 2nd ed. Dover Books on Mathematics. 1983. Reprint, Mineola, N.Y: Dover Publications, Inc., 1999.
- Kahn, Donald W. Topology: An Introduction to the Point-Set and Algebraic Areas. Dover Books on Mathematics. Mineola, N.Y: Dover Publications, Inc., 1995.
- Kasriel, Robert H. Undergraduate Topology. Dover Books on Mathematics. Mineola, N.Y: Dover Publications, Inc., 2009.
- López, Rafael. Point-Set Topology: A Working Textbook. 1st ed. Springer Undergraduate Mathematics Series. Springer, 2024.
- Mendelson, Bert. Introduction to Topology. 3rd ed. Dover Books on Mathematics. Dover Publications, Inc., 1990.
- Morris, Sidney A. Topology Without Tears, 2024. [.pdf]
- Munkres, James R., 1930-. Topology. 2nd ed. 1975. Reprint, Prentice-Hall, Inc., 1999.
- Shick, Paul L. Topology: Point-Set and Geometric. 1st ed. Wiley-Interscience, 2007.
- Sierpinski, Waclaw. General Topology. Translated by C. Cecilia Krieger. Repring. Dover Books on Mathematics. Mineola, N.Y: Dover Publications, Inc., 2020.
- Viru, O. Ya., O.A. Ivanov, N. Yu. Netsvetaev, and V.M. Kharlamov. Elementary Topology: Problem Textbook. American Mathematical Society, 2008.
- Waldmann, Stefan. Topology: An Introduction. Springer, 2014.
- Willard, Stephen. General Topology. Dover Books on Mathematics. Mineola, N.Y: Dover Publications, Inc., 2004.
AI generated featured photo courtesy of Glif Alpha