For a constant ϵ, we prove a poly(N) lower bound on the (randomized) communication complexity of ϵ-Nash equilibrium in two-player NxN games. For n-player binary-action games we prove an exp(n) lower bound for the (randomized) communication complexity of (ϵ,ϵ)-weak approximate Nash equilibrium, which is a profile of mixed actions such that at least (1−ϵ)-fraction of the players are ϵ-best replying.
Suggested by In Game Theory, No Clear Path to Equilibrium by Erica Klarreich (Quanta Magazine)