I'm a biomedical and electrical engineer with interests in information theory, complexity, evolution, genetics, signal processing, IndieWeb, theoretical mathematics, and big history.
I'm also a talent manager-producer-publisher in the entertainment industry with expertise in representation, distribution, finance, production, content delivery, and new media.
So, I’m publishing my first book. Not a book I wrote, mind you, but a book for which I’m the actual publisher…
We’re throwing a party at Chevalier’s in Los Angeles to celebrate it. Henry James Korn, a brilliant writer—so good that I went to the trouble of publishing it myself rather than just selling it, as I’ve done so often in the past—will be doing a reading and signing on March 2nd. I hope you can all join us!
RSVP via Facebook or directly at <a href=”http://boffosockobooks.com/books/authors/henry-james-korn/amerikan-krazy/#appearances”” target=”_blank”>Boffo Socko Books.
If you have to miss the launch, you may be able to catch one of his other <a href=”http://boffosockobooks.com/books/authors/henry-james-korn/amerikan-krazy/#appearances”” target=”_blank”>upcoming book signings.
Many readers often ask me for resources for delving into the basics of information theory. I hadn’t posted it before, but the Santa Fe Institute recently had an online course Introduction to Information Theory through their Complexity Explorer, which has some other excellent offerings. It included videos, fora, and other resources and was taught by the esteemed physicist and professor Seth Lloyd. There are a number of currently active students still learning and posting there.
Introduction to Information Theory
About the Tutorial:
This tutorial introduces fundamental concepts in information theory. Information theory has made considerable impact in complex systems, and has in part co-evolved with complexity science. Research areas ranging from ecology and biology to aerospace and information technology have all seen benefits from the growth of information theory.
In this tutorial, students will follow the development of information theory from bits to modern application in computing and communication. Along the way Seth Lloyd introduces valuable topics in information theory such as mutual information, boolean logic, channel capacity, and the natural relationship between information and entropy.
Lloyd coherently covers a substantial amount of material while limiting discussion of the mathematics involved. When formulas or derivations are considered, Lloyd describes the mathematics such that less advanced math students will find the tutorial accessible. Prerequisites for this tutorial are an understanding of logarithms, and at least a year of high-school algebra.
About the Instructor(s):
Professor Seth Lloyd is a principal investigator in the Research Laboratory of Electronics (RLE) at the Massachusetts Institute of Technology (MIT). He received his A.B. from Harvard College in 1982, the Certificate of Advanced Study in Mathematics (Part III) and an M. Phil. in Philosophy of Science from Cambridge University in 1983 and 1984 under a Marshall Fellowship, and a Ph.D. in Physics in 1988 from Rockefeller University under the supervision of Professor Heinz Pagels.
From 1988 to 1991, Professor Lloyd was a postdoctoral fellow in the High Energy Physics Department at the California Institute of Technology, where he worked with Professor Murray Gell-Mann on applications of information to quantum-mechanical systems. From 1991 to 1994, he was a postdoctoral fellow at Los Alamos National Laboratory, where he worked at the Center for Nonlinear Systems on quantum computation. In 1994, he joined the faculty of the Department of Mechanical Engineering at MIT. Since 1988, Professor Lloyd has also been an adjunct faculty member at the Sante Fe Institute.
Professor Lloyd has performed seminal work in the fields of quantum computation and quantum communications, including proposing the first technologically feasible design for a quantum computer, demonstrating the viability of quantum analog computation, proving quantum analogs of Shannon’s noisy channel theorem, and designing novel methods for quantum error correction and noise reduction.
Professor Lloyd is a member of the American Physical Society and the Amercian Society of Mechanical Engineers.
Tutorial Team:
Yoav Kallus is an Omidyar Fellow at the Santa Fe Institute. His research at the boundary of statistical physics and geometry looks at how and when simple interactions lead to the formation of complex order in materials and when preferred local order leads to system-wide disorder. Yoav holds a B.Sc. in physics from Rice University and a Ph.D. in physics from Cornell University. Before joining the Santa Fe Institute, Yoav was a postdoctoral fellow at the Princeton Center for Theoretical Science in Princeton University.
A review of Summa Technologiae by Stanislaw Lem by David Auerbach from the Los Angeles Review of Books.
Summa Technologiae
AT LAST WE have it in English. Summa Technologiae, originally published in Polish in 1964, is the cornerstone of Stanislaw Lem’s oeuvre, his consummate work of speculative nonfiction. Trained in medicine and biology, Lem synthesizes the current science of the day in ways far ahead of most science fiction of the time.
I came across this book review quite serendipitously today via an Auerbach article in Slate, which I’ve bookmarked. I found a copy of the book and have added it to the top of my reading pile. As I’m currently reading an advance reader edition of Sean Carroll’sThe Big Picture, I can only imagine how well the two may go together despite being written nearly 60 years apart.
The Theory of Everything and Then Some: In complexity theory, physicists try to understand economics while sociologists think like biologists. Can they bring us any closer to universal knowledge?
Yesterday I ran across this nice little video explaining some recent research on global language networks. It’s not only interesting in its own right, but is a fantastic example of science communication as well.
I’m interested in some of the information theoretic aspects of this as well as the relation of this to the area of corpus linguistics. I’m also curious if one could build worthwhile datasets like this for the ancient world (cross reference some of the sources I touch on in relation to the Dickinson College Commentaries within Latin Pedagogy and the Digital Humanities) to see what influences different language cultures have had on each other. Perhaps the historical record could help to validate some of the predictions made in relation to the future?
The paper “Global distribution and drivers of language extinction risk” indicates that of all the variables tested, economic growth was most strongly linked to language loss.
Finally, I can also only think about how this research may help to temper some of the xenophobic discussion that occurs in American political life with respect to fears relating to Mexican immigration issues as well as the position of China in the world economy.
Those intrigued by the video may find the website set up by the researchers very interesting. It contains links to the full paper as well as visualizations and links to the data used.
Abstract
Languages vary enormously in global importance because of historical, demographic, political, and technological forces. However, beyond simple measures of population and economic power, there has been no rigorous quantitative way to define the global influence of languages. Here we use the structure of the networks connecting multilingual speakers and translated texts, as expressed in book translations, multiple language editions of Wikipedia, and Twitter, to provide a concept of language importance that goes beyond simple economic or demographic measures. We find that the structure of these three global language networks (GLNs) is centered on English as a global hub and around a handful of intermediate hub languages, which include Spanish, German, French, Russian, Portuguese, and Chinese. We validate the measure of a language’s centrality in the three GLNs by showing that it exhibits a strong correlation with two independent measures of the number of famous people born in the countries associated with that language. These results suggest that the position of a language in the GLN contributes to the visibility of its speakers and the global popularity of the cultural content they produce.
“A language like Dutch — spoken by 27 million people — can be a disproportionately large conduit, compared with a language like Arabic, which has a whopping 530 million native and second-language speakers,” Science reports. “This is because the Dutch are very multilingual and very online.”
I’m sure there will be some hiccups and problems in the transition, but I hope to get these ironed out shortly. If you notice something bothersome, please don’t hesitate to drop me a note.
Information is a precise concept that can be defined mathematically, but its relationship to what we call "knowledge" is not always made clear. Furthermore, the concepts "entropy" and "information", while deeply related, are distinct and must be used with care, something that is not always achieved in the literature. In this elementary introduction, the concepts of entropy and information are laid out one by one, explained intuitively, but defined rigorously. I argue that a proper understanding of information in terms of prediction is key to a number of disciplines beyond engineering, such as physics and biology.
Comments: 19 pages, 2 figures. To appear in Philosophical Transaction of the Royal Society A
Subjects: Adaptation and Self-Organizing Systems (nlin.AO); Information Theory (cs.IT); Biological Physics (physics.bio-ph); Quantitative Methods (q-bio.QM)
Cite as:arXiv:1601.06176 [nlin.AO] (or arXiv:1601.06176v1 [nlin.AO] for this version)
Prior to the holidays Sean wrote a blogpost that contains a full overview table of contents, which will give everyone a stronger idea of its contents. For convenience I’ll excerpt it below.
Labels! Labels! It’s working with the Americans that’s given you this obsession with labels and brand names.
Msr. Charles Bonnet, painter, art forger, conman
counter-scolding his daughter who has called him a fraud
in How to Steal a Million (1966)
Then, just a bit later in the film:
We live in a crass commercial world with no faith or trust!
Msr. Charles Bonnet, painter, art forger, conman
ironically speaking to his daughter after forging and selling several major artworks
in How to Steal a Million (1966)
Many of you may have already heard, but I’m publishing books under the Boffo Socko Books imprint and our first release, a satirical novel entitled Amerikan Krazy written by Henry James Korn, is being put out on February 22, 2016, just in time to “celebrate” the race for the Presidential Election of 2016.
For a limited time, we’re giving away five free signed copies of the advanced reader edition before the official launch of the book. Along with major book review outlets, you’ll be able to have and read a copy weeks before the official launch.
You can sign up for the giveaway by January 15, 2016 at GoodReads.com.
Entrants will be notified on Jan 15, 2016 if they win.
We hope our friends will take a moment to register for a free GoodReads account and spend a moment to indicate that they “want to read” the book, and “follow Henry” there as an author.
If you have a moment, and feel so inclined, feel free to share a link to this post on your favorite social media outlet. Your help in spreading the word is greatly appreciated.
As it was published, I had read Kevin Hartnett’s article and interview with Christoph Adami The Information Theory of Life in Quanta Magazine. I recently revisited it and read through the commentary and stumbled upon an interesting quote relating to the history of information in biology:
Polymath Adami has ‘looked at so many fields of science’ and has correctly indicated the underlying importance of information theory, to which he has made important contributions. However, perhaps because the interview was concerned with the origin of life and was edited and condensed, many readers may get the impression that IT is only a few decades old. However, information ideas in biology can be traced back to at least 19th century sources. In the 1870s Ewald Hering in Prague and Samuel Butler in London laid the foundations. Butler’s work was later taken up by Richard Semon in Munich, whose writings inspired the young Erwin Schrodinger in the early decades of the 20th century. The emergence of his text – “What is Life” – from Dublin in the 1940s, inspired those who gave us DNA structure and the associated information concepts in “the classic period” of molecular biology. For more please see: Forsdyke, D. R. (2015) History of Psychiatry 26 (3), 270-287.
For those interested in reading more on this historical tidbit, I’ve dug up a copy of the primary Forsdyke reference which first appeared on arXiv (prior to its ultimate publication in History of Psychiatry [.pdf]):
Abstract: Today’s ‘theory of mind’ (ToM) concept is rooted in the distinction of nineteenth century philosopher William Clifford between ‘objects’ that can be directly perceived, and ‘ejects,’ such as the mind of another person, which are inferred from one’s subjective knowledge of one’s own mind. A founder, with Charles Darwin, of the discipline of comparative psychology, George Romanes considered the minds of animals as ejects, an idea that could be generalized to ‘society as eject’ and, ultimately, ‘the world as an eject’ – mind in the universe. Yet, Romanes and Clifford only vaguely connected mind with the abstraction we call ‘information,’ which needs ‘a vehicle of symbols’ – a material transporting medium. However, Samuel Butler was able to address, in informational terms depleted of theological trappings, both organic evolution and mind in the universe. This view harmonizes with insights arising from modern DNA research, the relative immortality of ‘selfish’ genes, and some startling recent developments in brain research.
Comments: Accepted for publication in History of Psychiatry. 31 pages including 3 footnotes. Based on a lecture given at Santa Clara University, February 28th 2014, at a Bannan Institute Symposium on ‘Science and Seeking: Rethinking the God Question in the Lab, Cosmos, and Classroom.’
The original arXiv article also referenced two lectures which are appended below:
http://www.youtube.com/watch?v=a3yNbTUCPd4
[Original Draft of this was written on December 14, 2015.]
References
[1]
D. Forsdyke R., “‘A vehicle of symbols and nothing more’. George Romanes, theory of mind, information, and Samuel Butler,” History of Psychiatry, vol. 26, no. 3, Aug. 2015 [Online]. Available: http://journals.sagepub.com/doi/abs/10.1177/0957154X14562755