Synthetic Biology’s Hunt for the Genetic Transistor | IEEE Spectrum

Replied to Synthetic Biology's Hunt for the Genetic Transistor (spectrum.ieee.org)
How genetic circuits will unlock the true potential of bioengineering

This is a great short article on bioengineering and synthetic biology written for the layperson. It’s also one of the best crash courses I’ve read on genetics in a while.

Media_httpspectrumiee_kzdjg

‘The Information’ by James Gleick – Book Review by Janet Maslin | New York Times

Reposted ‘The Information’ by James Gleick - Review (nytimes.com)
“The Information,” by James Gleick, is to the nature, history and significance of data what the beach is to sand.

This book is assuredly going to have to skip up to the top of my current reading list.

“The Information” is so ambitious, illuminating and sexily theoretical that it will amount to aspirational reading for many of those who have the mettle to tackle it. Don’t make the mistake of reading it quickly. Imagine luxuriating on a Wi-Fi-equipped desert island with Mr. Gleick’s book, a search engine and no distractions. “The Information” is to the nature, history and significance of data what the beach is to sand.

In this relaxed setting, take the time to differentiate among the Brownian (motion), Bodleian (library) and Boolean (logic) while following Mr. Gleick’s version of what Einstein called “spukhafte Fernwirkung,” or “spooky action at a distance.” Einstein wasn’t precise about what this meant, and Mr. Gleick isn’t always precise either. His ambitions for this book are diffuse and far flung, to the point where providing a thumbnail description of “The Information” is impossible.

So this book’s prologue is its most slippery section. It does not exactly outline a unifying thesis. Instead it hints at the amalgam of logic, philosophy, linguistics, research, appraisal and anecdotal wisdom that will follow. If Mr. Gleick has one overriding goal it is to provide an animated history of scientific progress, specifically the progress of the technology that allows information to be recorded, transmitted and analyzed. This study’s range extends from communication by drumbeat to cognitive assault by e-mail.

As an illustration of Mr. Gleick’s versatility, consider what he has to say about the telegraph. He describes the mechanical key that made telegraphic transmission possible; the compression of language that this new medium encouraged; that it literally was a medium, a midway point between fully verbal messages and coded ones; the damaging effect its forced brevity had on civility; the confusion it created as to what a message actually was (could a mother send her son a dish of sauerkraut?) and the new conceptual thinking that it helped implement. The weather, which had been understood on a place-by-place basis, was suddenly much more than a collection of local events.

Beyond all this Mr. Gleick’s telegraph chapter, titled “A Nervous System for the Earth,” finds time to consider the kind of binary code that began to make sense in the telegraph era. It examines the way letters came to treated like numbers, the way systems of ciphers emerged. It cites the various uses to which ciphers might be put by businessmen, governments or fiction writers (Lewis Carroll, Jules Verne and Edgar Allan Poe). Most of all it shows how this phase of communication anticipated the immense complexities of our own information age.

Although “The Information” unfolds in a roughly chronological way, Mr. Gleick is no slave to linearity. He freely embarks on colorful digressions. Some are included just for the sake of introducing the great eccentrics whose seemingly marginal inventions would prove to be prophetic. Like Richard Holmes’s “Age of Wonder” this book invests scientists with big, eccentric personalities. Augusta Ada Lovelace, the daughter of Lord Byron, may have been spectacularly arrogant about what she called “my immense reasoning faculties,” claiming that her brain was “something more than merely mortal.” But her contribution to the writing of algorithms can, in the right geeky circles, be mentioned in the same breath as her father’s contribution to poetry.

The segments of “The Information” vary in levels of difficulty. Grappling with entropy, randomness and quantum teleportation is the price of enjoying Mr. Gleick’s simple, entertaining riffs on the Oxford English Dictionary’s methodology, which has yielded 30-odd spellings of “mackerel” and an enchantingly tongue-tied definition of “bada-bing” and on the cyber-battles waged via Wikipedia. (As he notes, there are people who have bothered to fight over Wikipedia’s use of the word “cute” to accompany a picture of a young polar bear.) That Amazon boasts of being able to download a book called “Data Smog” in less than a minute does not escape his keen sense of the absurd.

As it traces our route to information overload, “The Information” pays tribute to the places that made it possible. He cites and honors the great cogitation hives of yore. In addition to the Institute for Advanced Study in Princeton, N.J., the Mount Rushmore of theoretical science, he acknowledges the achievements of corporate facilities like Bell Labs and I.B.M.’s Watson Research Center in the halcyon days when many innovations had not found practical applications and progress was its own reward.

“The Information” also lauds the heroics of mathematicians, physicists and computer pioneers like Claude Shannon, who is revered in the computer-science realm for his information theory but not yet treated as a subject for full-length, mainstream biography. Mr. Shannon’s interest in circuitry using “if … then” choices conducting arithmetic in a binary system had novelty when he began formulating his thoughts in 1937. “Here in a master’s thesis by a research assistant,” Mr. Gleick writes, “was the essence of the computer revolution yet to come.”

Among its many other virtues “The Information” has the rare capacity to work as a time machine. It goes back much further than Shannon’s breakthroughs. And with each step backward Mr. Gleick must erase what his readers already know. He casts new light on the verbal flourishes of the Greek poetry that preceded the written word: these turns of phrase could be as useful for their mnemonic power as for their art. He explains why the Greeks arranged things in terms of events, not categories; how one Babylonian text that ends with “this is the procedure” is essentially an algorithm; and why the telephone and the skyscraper go hand in hand. Once the telephone eliminated the need for hand-delivered messages, the sky was the limit.

In the opinion of “The Information” the world of information still has room for expansion. We may be drowning in spam, but the sky’s still the limit today.

Confessions of David Seidler, a 73-year-old Oscars virgin

Read Confessions of David Seidler, a 73-year-old Oscars virgin (LA Times)
My first realization I was hooked on Oscar was when I seriously began pondering one of mankind's most profound dilemmas: whether to rent or buy a tux. That first step, as with any descent down a...

This is a great (and hilarious) story by and about the writer of THE KING’S SPEECH.

Amplify’d from www.latimes.com

Confessions of David Seidler, a 73-year-old Oscars virgin

The screenwriter, whose first nomination was for ‘The King’s Speech,’ ponders his formalwear options for the big night, his standing in Hollywood and much more.

The Decline Effect and the Scientific Method | The New Yorker

Replied to The Truth Wears Off: Is there something wrong with the scientific method? (The New Yorker)

Jonah Lehrer’s New Yorker article “The Truth Wears Off: Is there something wrong with the scientific method?” is an interesting must-read article. In it he discusses the “Decline Effect” and outlier statistical effects within scientific research.

Among other interesting observations in it, he calls attention to the fact that, “according to the journal Nature, a third of all studies never even get cited, let alone repeated.”

For scholars of Fisher, Popper, and Kuhn, some of this discussion won’t be quite so novel, but for anyone designing scientific experiments, the effects discussed here are certainly worthy of notice and further study and scrutiny.

New Measures of Scholarly Impact | Inside Higher Ed

Read New Measures of Scholarly Impact (insidehighered.com)
Data analytics are changing the ways to judge the influence of papers and journals.

This article from earlier in the month has some potentially profound affects on the research and scientific communities. Some of the work and research being done here will also have significant affect on social media communities in the future as well.

The base question is are citations the best indicator of impact, or are there other better emerging methods of indicating the impact of scholarly work?

The Top Ten Daily Consequences of Having Evolved | Smithsonian Magazine

Read The Top Ten Daily Consequences of Having Evolved (smithsonianmag.com)
From hiccups to wisdom teeth, our own bodies are worse off than most because of the differences between the wilderness in which we evolved and the modern world in which we live.

A short and interesting list of examples showing proof of our evolution.

Syndicated copies to:

Global classical solutions of the Boltzmann equation with long-range interactions

Bookmarked Global classical solutions of the Boltzmann equation with long-range interactions (pnas.org)

Finally, after 140 years, Robert Strain and Philip Gressman at the University of Pennsylvania have found a mathematical proof of Boltzmann’s equation, which predicts the motion of gas molecules.

Abstract

This is a brief announcement of our recent proof of global existence and rapid decay to equilibrium of classical solutions to the Boltzmann equation without any angular cutoff, that is, for long-range interactions. We consider perturbations of the Maxwellian equilibrium states and include the physical cross-sections arising from an inverse-power intermolecular potential r-(p-1) with p > 2, and more generally. We present here a mathematical framework for unique global in time solutions for all of these potentials. We consider it remarkable that this equation, derived by Boltzmann (1) in 1872 and Maxwell (2) in 1867, grants a basic example where a range of geometric fractional derivatives occur in a physical model of the natural world. Our methods provide a new understanding of the effects due to grazing collisions.

via pnas.org