Book Review: Werner Loewenstein’s “The Touchstone of Life: Molecular Information, Cell Communication, and the Foundations of Life”

The Touchstone of Life: Molecular Information, Cell Communication, and the Foundations of Life by Werner R. Loewenstein

Though there is a paucity of equations, particularly on the information theoretic side, Loewenstein does a fantastic job of discussing the theory and philosophy of what is going on in the overlapping fields of information theory and microbiology. (I will note that it is commonly held wisdom within publishing, particularly for books for the broader public, that the number of equations in a text is inversely proportional to the number of sales and I’m sure this is the reason for the lack of mathematical substantiation which he could easily have supplied.)

The Touchstone of Life (Book Cover)

This is a much more specific and therefore much better – in my mind – book than John Avery’s Information Theory and Evolution which covers some similar ground. Loewenstein has a much better and more specific grasp of the material in my opinion. Those who feel overwhelmed by Loewenstein may prefer to take a step back to Avery’s more facile presentation.

Loewenstein has a deft ability to describe what is going on and give both an up-close view with many examples as well as a spectacular view of the broader picture – something which is often missing in general science books of this sort. Readers with no mathematical or microbiology background can benefit from it as much as those with more experience.

One thing which sets it apart from much of its competition, even in the broader general science area of non-fiction, is that the author has a quirky but adept ability to add some flowery language and analogy to clarify his points. Though many will find this off-putting, it really does add some additional flavor to what might be dry and dull explication to many. His range of background knowledge, philosophy and vocabulary are second only (and possibly even on par or exceeding in some cases) that of Simon Winchester.

I’d highly recommend this book to people prior to their academic studies of biochemistry or molecular cell biology or to budding biomedical engineers prior to their junior year of study. I truly wish I had read this in 1994 myself, but alas it didn’t exist until a few years after. I lament that I hadn’t picked it up and been able to read it thoroughly until now.

For my part, his drastically differing viewpoint of the way in which biology should be viewed moving forward, is spot on. I am firmly a member of this new “school”. His final chapter on this concept is truly illuminating from a philosophical and theoretical view and I encourage people to read it first instead of last.

I’ll also note briefly that I’ve seen some reviews of this book which make mention of creationism or intelligent design and whether or not proponents of those philosophies feel that Loewenstein’s work here supports them or not, particularly since Loewenstein appeared on a panel with Dembski once. I will state for those who take a purely scientific viewpoint of things, that this book is written in full support of evolution and microbiology and doesn’t use the concept of “information” to muddy the waters the way many ID arguments are typically made.

Original review posted to GoodReads.com on 9/4/12

Microbiology and Eternal Life (A Short Play)

RNA: Grant me eternal life.
Genie: That’s not in my power to give.
RNA: Grant me then at least a wish?
Genie: (laughing) One wish?
RNA: Yes, only one.
Genie: Go ahead…
RNA: (with great wile and guile) Make me thrifty.
Genie: (with a cherry nod and a wink) Granted!
RNA: Thank you!

…and the RNA lived forever after.

Books have always been digital, not analog

James Gleick (August 1, 1954 — ) American author and historian of science
on Twitter

 

John McCarthy on Arithmetic

John McCarthy (), an American computer scientist and cognitive scientist who was one of the founders of the discipline of artificial intelligence
in Computer Scientist Coined ‘Artificial Intelligence’ in The Wall Street Journal

 

Christoph Adami: Finding Life We Can’t Imagine | TEDx

Watched Finding life we can't imagine by Christoph Adami from ted.com
How do we search for alien life if it's nothing like the life that we know? Christoph Adami shows how he uses his research into artificial life -- self-replicating computer programs -- to find a signature, a "biomarker," that is free of our preconceptions of what life is.
Adami’s work is along similar lines to some of my own research. This short video gives an intriguing look into some of the basics of how to define life so that one can recognize it when one sees it.

Book Review: John Avery’s “Information Theory and Evolution”

Information Theory and Evolution Book Cover Information Theory and Evolution
John Avery
Non-fiction, Popular Science
World Scientific
January 1, 2003
paperback
217

This highly interdisciplinary book discusses the phenomenon of life, including its origin and evolution (and also human cultural evolution), against the background of thermodynamics, statistical mechanics, and information theory. Among the central themes is the seeming contradiction between the second law of thermodynamics and the high degree of order and complexity produced by living systems. This paradox has its resolution in the information content of the Gibbs free energy that enters the biosphere from outside sources, as the author shows. The role of information in human cultural evolution is another focus of the book. One of the final chapters discusses the merging of information technology and biotechnology into a new discipline — bio-information technology.

Information Theory and EvolutionInformation Theory and Evolution by John Avery
My rating: 3 of 5 stars

This is a fantastic book which, for the majority of people, I’d give a five star review. For my own purposes, however, I was expecting far more on the theoretical side of information theory and statistical mechanics as applied to microbiology that it didn’t live up to, so I’m giving it three stars from a purely personal perspective.

I do wish that someone had placed it in my hands and forced me to read it when I was a freshman in college entering the study of biomedical and electrical engineering. It is far more an impressive book at this level and for those in the general public who are interested in the general history of science and philosophy of the topics. The general reader may be somewhat scared by a small amount of mathematics in chapter 4, but there is really no loss of continuity by skimming through most of it. For those looking for a bit more rigor, Avery provides some additional details in appendix A, but for the specialist, the presentation is heavily lacking.

The book opens with a facile but acceptable overview of the history of the development for the theory of evolution whereas most other texts would simply begin with Darwin’s work and completely skip the important philosophical and scientific contributions of Aristotle, Averroes, Condorcet, Linnaeus, Erasmus Darwin, Lamarck, or the debates between Cuvier and St. Hilaire.

For me, the meat of the book was chapters 3-5 and appendix A which collectively covered molecular biology, evolution, statistical mechanics, and a bit of information theory, albeit from a very big picture point of view. Unfortunately the rigor of the presentation and the underlying mathematics were skimmed over all too quickly to accomplish what I had hoped to gain from the text. On the other hand, the individual sections of “suggestions for further reading” throughout the book seem well researched and offer an acceptable launching pad for delving into topics in places where they may be covered more thoroughly.

The final several chapters become a bit more of an overview of philosophy surrounding cultural evolution and information technology which are much better covered and discussed in James Gleick’s recent book The Information.

Overall, Avery has a well laid out outline of the broad array of subjects and covers it all fairly well in an easy to read and engaging style.

View all my reviews

Reading Progress
  • Started book on 07/11/11
  • Finished book on 08/14//11

John Battelle Review of James Gleick’s “The Information” and Why It’s a Good Thing

John Battelle recently posted a review of James Gleick’s last book The Information: A History, A Theory, A Flood. It reminds me that I find it almost laughable when the vast majority of the technology press and the digiterati bloviate about their beats when at its roots, they know almost nothing about how technology truly works or the mathematical or theoretical underpinnings of what is happening — and even worse that they don’t seem to really care.

I’ve seen hundreds of reviews and thousands of mentions of Steven Levy’s book In the Plex: How Google Thinks, Works, and Shapes Our Lives in the past few months, — in fact, Battelle reviewed it just before Gleick’s book — but I’ve seen few, if any, of Gleick’s book which I honestly think is a much more worthwhile read about what is going on in the world and has farther reaching implications about where we are headed.

I’ll give a BIG tip my hat to John for his efforts to have read Gleick and post his commentary and to continue to push the boundary further as he invites Gleick to speak at Web 2.0 Summit in the fall. I hope his efforts will bring the topic to the much larger tech community.  I further hope he and others might take the time to read Claude Shannon’s original paper [.pdf download], and if he’s further interested in the concept of thermodynamic entropy, I can recommend Andre Thess’s text The Entropy Principle: Thermodynamics for the Unsatisfied, which I’ve recently discovered and think does a good (and logically) consistent job of defining the concept at a level accessible to the average public.

On the Fallacy of Diminishing Returns

Nominated for quote of the week, which I encountered while reading Matt Ridley’s The Rational Optimist:

Thomas Jefferson (), American Founding Father and the principal author of the Declaration of Independence (1776)
in a letter to Isaac McPherson

 

Entropy Is Universal Rule of Language | Wired Science

Read Entropy Is Universal Rule of Language by Lisa Grossman (Wired)
The amount of information carried in the arrangement of words is the same across all languages, even languages that aren't related to each other. This consistency could hint at a single common ancestral language, or universal features of how human brains process speech. "It doesn't matter what language or style you take," said systems biologist…
The research this article is based on is quite interesting for those doing language research.

Bob Frankston on Communications

Watched Triangulation 4: Bob Frankston by Leo Laporte and Tom Merritt from TWiT Network
Computer pioneer who helped create the first spreadsheet, Bob Frankston, is this week's guest.
On a recent episode of Leo Laporte and Tom Merrit’s show Triangulation, they interviewed Bob Frankston of VisiCalc fame. They gave a great discussion of the current state of broadband in the U.S. and how it might be much better.  They get just a bit technical in places, but it’s a fantastic and very accessible discussion of the topic of communications that every American should be aware of.

Synthetic Biology’s Hunt for the Genetic Transistor | IEEE Spectrum

Read Synthetic Biology's Hunt for the Genetic Transistor (spectrum.ieee.org)
How genetic circuits will unlock the true potential of bioengineering 
This is a great short article on bioengineering and synthetic biology written for the layperson. It’s also one of the best crash courses I’ve read on genetics in a while.

‘The Information’ by James Gleick – Book Review by Janet Maslin | New York Times

Reposted ‘The Information’ by James Gleick - Review (nytimes.com)
“The Information,” by James Gleick, is to the nature, history and significance of data what the beach is to sand.
This book is assuredly going to have to skip up to the top of my current reading list.

“The Information” is so ambitious, illuminating and sexily theoretical that it will amount to aspirational reading for many of those who have the mettle to tackle it. Don’t make the mistake of reading it quickly. Imagine luxuriating on a Wi-Fi-equipped desert island with Mr. Gleick’s book, a search engine and no distractions. “The Information” is to the nature, history and significance of data what the beach is to sand.

In this relaxed setting, take the time to differentiate among the Brownian (motion), Bodleian (library) and Boolean (logic) while following Mr. Gleick’s version of what Einstein called “spukhafte Fernwirkung,” or “spooky action at a distance.” Einstein wasn’t precise about what this meant, and Mr. Gleick isn’t always precise either. His ambitions for this book are diffuse and far flung, to the point where providing a thumbnail description of “The Information” is impossible.

So this book’s prologue is its most slippery section. It does not exactly outline a unifying thesis. Instead it hints at the amalgam of logic, philosophy, linguistics, research, appraisal and anecdotal wisdom that will follow. If Mr. Gleick has one overriding goal it is to provide an animated history of scientific progress, specifically the progress of the technology that allows information to be recorded, transmitted and analyzed. This study’s range extends from communication by drumbeat to cognitive assault by e-mail.

As an illustration of Mr. Gleick’s versatility, consider what he has to say about the telegraph. He describes the mechanical key that made telegraphic transmission possible; the compression of language that this new medium encouraged; that it literally was a medium, a midway point between fully verbal messages and coded ones; the damaging effect its forced brevity had on civility; the confusion it created as to what a message actually was (could a mother send her son a dish of sauerkraut?) and the new conceptual thinking that it helped implement. The weather, which had been understood on a place-by-place basis, was suddenly much more than a collection of local events.

Beyond all this Mr. Gleick’s telegraph chapter, titled “A Nervous System for the Earth,” finds time to consider the kind of binary code that began to make sense in the telegraph era. It examines the way letters came to treated like numbers, the way systems of ciphers emerged. It cites the various uses to which ciphers might be put by businessmen, governments or fiction writers (Lewis Carroll, Jules Verne and Edgar Allan Poe). Most of all it shows how this phase of communication anticipated the immense complexities of our own information age.

Although “The Information” unfolds in a roughly chronological way, Mr. Gleick is no slave to linearity. He freely embarks on colorful digressions. Some are included just for the sake of introducing the great eccentrics whose seemingly marginal inventions would prove to be prophetic. Like Richard Holmes’s “Age of Wonder” this book invests scientists with big, eccentric personalities. Augusta Ada Lovelace, the daughter of Lord Byron, may have been spectacularly arrogant about what she called “my immense reasoning faculties,” claiming that her brain was “something more than merely mortal.” But her contribution to the writing of algorithms can, in the right geeky circles, be mentioned in the same breath as her father’s contribution to poetry.

The segments of “The Information” vary in levels of difficulty. Grappling with entropy, randomness and quantum teleportation is the price of enjoying Mr. Gleick’s simple, entertaining riffs on the Oxford English Dictionary’s methodology, which has yielded 30-odd spellings of “mackerel” and an enchantingly tongue-tied definition of “bada-bing” and on the cyber-battles waged via Wikipedia. (As he notes, there are people who have bothered to fight over Wikipedia’s use of the word “cute” to accompany a picture of a young polar bear.) That Amazon boasts of being able to download a book called “Data Smog” in less than a minute does not escape his keen sense of the absurd.

As it traces our route to information overload, “The Information” pays tribute to the places that made it possible. He cites and honors the great cogitation hives of yore. In addition to the Institute for Advanced Study in Princeton, N.J., the Mount Rushmore of theoretical science, he acknowledges the achievements of corporate facilities like Bell Labs and I.B.M.’s Watson Research Center in the halcyon days when many innovations had not found practical applications and progress was its own reward.

“The Information” also lauds the heroics of mathematicians, physicists and computer pioneers like Claude Shannon, who is revered in the computer-science realm for his information theory but not yet treated as a subject for full-length, mainstream biography. Mr. Shannon’s interest in circuitry using “if … then” choices conducting arithmetic in a binary system had novelty when he began formulating his thoughts in 1937. “Here in a master’s thesis by a research assistant,” Mr. Gleick writes, “was the essence of the computer revolution yet to come.”

Among its many other virtues “The Information” has the rare capacity to work as a time machine. It goes back much further than Shannon’s breakthroughs. And with each step backward Mr. Gleick must erase what his readers already know. He casts new light on the verbal flourishes of the Greek poetry that preceded the written word: these turns of phrase could be as useful for their mnemonic power as for their art. He explains why the Greeks arranged things in terms of events, not categories; how one Babylonian text that ends with “this is the procedure” is essentially an algorithm; and why the telephone and the skyscraper go hand in hand. Once the telephone eliminated the need for hand-delivered messages, the sky was the limit.

In the opinion of “The Information” the world of information still has room for expansion. We may be drowning in spam, but the sky’s still the limit today.

2011 USC Viterbi Lecture “Adventures in Coding Theory” by Elwyn Berklekamp

Bookmarked 2011 Andrew Viterbi Lecture Ming Hsieh Department of Electrical Engineering (USC - Viterbi School of Engineering)

"Adventures in Coding Theory"

Professor Elwyn Berlekamp
University of California, Berkeley

Gerontology Auditorium, Thursday, March 3, 4:30 to 5:30 p.m.

>> Click here for live wedcast

Abstract
The inventors of error-correcting codes were initially motivated by problems in communications engineering. But coding theory has since also influenced several other fields, including memory technology, theoretical computer science, game theory, portfolio theory, and symbolic manipulation. This talk will recall some forays into these subjects.

I wish I could be at this lecture in person today, but I’ll have to live with the live webcast.

Brief Thoughts on the Google/Verizon Compromise and Net Neutrality in the Mobile Space

This last week there’s been a lot of interesting discussion about net neutrality as it relates particularly to the mobile space.  Though there has been some generally good discussion and interesting debate on the topic, I’ve found the best spirited discussion to be that held by Leo Laporte, Gina Trapani, Jeff Jarvis, and guest Stacey Higginbotham on this week’s episode of This Week in Google.

[youtube http://www.youtube.com/watch?v=jJQy2R6UT5U?wmode=transparent]

What I’ve found most interesting in many of these debates, including this one, is that though there is occasional discussion of building out additional infrastructure to provide additional capacity, there is generally never discussion of utilizing information theory to improve bandwidth either mathematically or from an engineering perspective.  Claude Shannon is rolling in his grave.

Apparently, despite last year’s great “digital switch” in television frequencies from analog to provide additional television capacity and the subsequent auction of the 700MHz spectrum, everyone forgets that engineering additional capacity is often cheaper and easier than just physically building more.  Shannon’s original limit is far from a reality, so we know there’s much room for improvement here, particularly because most of the improvement on reaching his limit in the past two decades has come about particularly because of the research in and growth of the mobile communications industry.

Perhaps our leaders could borrow a page from JFK in launching the space race in the 60’s, but instead of focusing on space, they might look at science and mathematics in making our communications infrastructure more robust and guaranteeing free and open internet access to all Americans?