🔖 Quantum Information Science II

Bookmarked Quantum Information Science II (edX)
Learn about quantum computation and quantum information in this advanced graduate level course from MIT.

About this course

Already know something about quantum mechanics, quantum bits and quantum logic gates, but want to design new quantum algorithms, and explore multi-party quantum protocols? This is the course for you!

In this advanced graduate physics course on quantum computation and quantum information, we will cover:

  • The formalism of quantum errors (density matrices, operator sum representations)
  • Quantum error correction codes (stabilizers, graph states)
  • Fault-tolerant quantum computation (normalizers, Clifford group operations, the Gottesman-Knill Theorem)
  • Models of quantum computation (teleportation, cluster, measurement-based)
  • Quantum Fourier transform-based algorithms (factoring, simulation)
  • Quantum communication (noiseless and noisy coding)
  • Quantum protocols (games, communication complexity)

Research problem ideas are presented along the journey.

What you’ll learn

  • Formalisms for describing errors in quantum states and systems
  • Quantum error correction theory
  • Fault-tolerant quantum procedure constructions
  • Models of quantum computation beyond gates
  • Structures of exponentially-fast quantum algorithms
  • Multi-party quantum communication protocols

Meet the instructor

bio for Isaac ChuangIsaac Chuang Professor of Electrical Engineering and Computer Science, and Professor of Physics MIT

Introduction to Complex Analysis – Lecture 1 Notes

For those who missed the first class of Introduction to Complex Analysis on 09/20/16, I’m attaching a link to the downloadable version of the notes in Livescribe’s Pencast .pdf format. This is a special .pdf file but it’s a bit larger in size because it has an embedded audio file in it that is playable with the more recent version of Adobe Reader X (or above) installed. (This means to get the most out of the file you have to download the file and open it in Reader X to get the audio portion. You can view the written portion in most clients, you’ll just be missing out on all the real fun and value of the full file.) [Editor’s note: Don’t we all wish Dr. Tao’s class was recording his lectures this way.]

With these notes, you should be able to toggle the settings in the file to read and listen to the notes almost as if you were attending the class live. I’ve done my best to write everything exactly as it was written on the board and only occasionally added small bits of additional text.

If you haven’t registered yet, you can watch the notes as if you were actually in the class and still join us next Tuesday night without missing a beat. There are over 25 people in the class not counting several I know who had to miss the first session.

Hope to see you then!

Viewing and Playing a Pencast PDF

Pencast PDF is a new format of notes and audio that can play in Adobe Reader X or above.

You can open a Pencast PDF as you would other PDF files in Adobe Reader X. The main difference is that a Pencast PDF can contain ink that has associated audio—called “active ink”. Click active ink to play its audio. This is just like playing a Pencast from Livescribe Online or in Livescribe Desktop. When you first view a notebook page, active ink appears in green type. When you click active ink, it turns gray and the audio starts playing. As audio playback continues, the gray ink turns green in synchronization with the audio. Non-active ink (ink without audio) is black and does not change appearance.

Audio Control Bar

Pencast PDFs have an audio control bar for playing, pausing, and stopping audio playback. The control bar also has jump controls, bookmarks (stars), and an audio timeline control.

Active Ink View Button

There is also an active ink view button. Click this button to toggle the “unwritten” color of active ink from gray to invisible. In the default (gray) setting, the gray words turn green as the audio plays. In the invisible setting, green words seem to write themselves on blank paper as the audio plays.

📖 5.0% done with Complex Analysis by Elias M. Stein & Rami Shakarchi

📖 5.0% done with Complex Analysis by Elias M. Stein & Rami Shakarchi

A nice beginning overview of where they’re going and philosophy of the book. Makes the subject sound beautiful and wondrous, though they do use the word ‘miraculous’ which is overstepping a bit in almost any math book whose history is over a century old.

Their opening motivation for why complex instead of just real:

However, everything changes drastically if we make a natural, but misleadingly simple-looking assumption on f: that it is differentiable in the complex sense. This condition is called holomorphicity, and it shapes most of the theory discussed in this book.

We shall start our study with some general characteristic properties of holomorphic functions, which are subsumed by three rather miraculous facts:

  1. Contour integration: If f is holomorphic in \Omega , then for appropriate closed paths in \Omega

    \int\limits_\gamma f(z)\,\mathrm{d}z = 0.

  2. Regularity: If f is holomorphic, then f is indefinitely differentiable.
  3. Analytic continuation: If f and g are holomorphic functions in \Omega which are equal in an arbitrarily small disc in \Omega , then f = g everywhere in \Omega .

This far into both books, I think I’m enjoying the elegance of Stein/Shakarchi better than Ahlfors.

Introduction to Galois Theory | Coursera

Bookmarked Introduction to Galois Theory by Ekaterina AmerikEkaterina Amerik (Coursera)
A very beautiful classical theory on field extensions of a certain type (Galois extensions) initiated by Galois in the 19th century. Explains, in particular, why it is not possible to solve an equation of degree 5 or more in the same way as we solve quadratic or cubic equations. You will learn to compute Galois groups and (before that) study the properties of various field extensions. We first shall survey the basic notions and properties of field extensions: algebraic, transcendental, finite field extensions, degree of an extension, algebraic closure, decomposition field of a polynomial. Then we shall do a bit of commutative algebra (finite algebras over a field, base change via tensor product) and apply this to study the notion of separability in some detail. After that we shall discuss Galois extensions and Galois correspondence and give many examples (cyclotomic extensions, finite fields, Kummer extensions, Artin-Schreier extensions, etc.). We shall address the question of solvability of equations by radicals (Abel theorem). We shall also try to explain the relation to representations and to topological coverings. Finally, we shall briefly discuss extensions of rings (integral elemets, norms, traces, etc.) and explain how to use the reduction modulo primes to compute Galois groups.
I’ve been watching MOOCs for several years and this is one of the few I’ve come across that covers some more advanced mathematical topics. I’m curious to see how it turns out and what type of interest/results it returns.

It’s being offered by National Research University – Higher School of Economics (HSE) in Russia.

[1609.02422] What can logic contribute to information theory?

Bookmarked [1609.02422] What can logic contribute to information theory? by David EllermanDavid Ellerman (128.84.21.199)
Logical probability theory was developed as a quantitative measure based on Boole's logic of subsets. But information theory was developed into a mature theory by Claude Shannon with no such connection to logic. But a recent development in logic changes this situation. In category theory, the notion of a subset is dual to the notion of a quotient set or partition, and recently the logic of partitions has been developed in a parallel relationship to the Boolean logic of subsets (subset logic is usually mis-specified as the special case of propositional logic). What then is the quantitative measure based on partition logic in the same sense that logical probability theory is based on subset logic? It is a measure of information that is named "logical entropy" in view of that logical basis. This paper develops the notion of logical entropy and the basic notions of the resulting logical information theory. Then an extensive comparison is made with the corresponding notions based on Shannon entropy.
Ellerman is visiting at UC Riverside at the moment. Given the information theory and category theory overlap, I’m curious if he’s working with John Carlos Baez, or what Baez is aware of this.

Based on a cursory look of his website(s), I’m going to have to start following more of this work.

Randomness And Complexity, from Leibniz To Chaitin | World Scientific Publishing

Bookmarked Randomness And Complexity, from Leibniz To Chaitin (amzn.to)
The book is a collection of papers written by a selection of eminent authors from around the world in honour of Gregory Chaitin s 60th birthday. This is a unique volume including technical contributions, philosophical papers and essays. Hardcover: 468 pages; Publisher: World Scientific Publishing Company (October 18, 2007); ISBN: 9789812770820

Peter Webb’s A Course in Finite Group Representation Theory

Bookmarked A Course in Finite Group Representation Theory by Peter WebbPeter Webb (math.umn.edu)
Download a pre-publication version of the book which will be published by Cambridge University Press. The book arises from notes of courses taught at the second year graduate level at the University of Minnesota and is suitable to accompany study at that level.

“Why should we want to know about representations over rings that are not fields of characteristic zero? It is because they arise in many parts of mathematics. Group representations appear any time we have a group of symmetries where there is some linear structure present, over some commutative ring. That ring need not be a field of characteristic zero.

Here are some examples.

  • […]
  • In the theory of error-correcting codes many important codes have a non-trivial symmetry group and are vector spaces over a finite field, thereby providing a representation of the group over that field.”
Peter Webb, February 23, 2016, Professor of Mathematics, University of Minnesota
in A Course in Finite Group Representation Theory to be published soon by Cambridge University Press

 

Introduction to Complex Analysis | UCLA Extension

Dr. Michael Miller has announced his Autumn mathematics course, and it is…

Introduction to Complex Analysis

Course Description

Complex analysis is one of the most beautiful and useful disciplines of mathematics, with applications in engineering, physics, and astronomy, as well as other branches of mathematics. This introductory course reviews the basic algebra and geometry of complex numbers; develops the theory of complex differential and integral calculus; and concludes by discussing a number of elegant theorems, including many–the fundamental theorem of algebra is one example–that are consequences of Cauchy’s integral formula. Other topics include De Moivre’s theorem, Euler’s formula, Riemann surfaces, Cauchy-Riemann equations, harmonic functions, residues, and meromorphic functions. The course should appeal to those whose work involves the application of mathematics to engineering problems as well as individuals who are interested in how complex analysis helps explain the structure and behavior of the more familiar real number system and real-variable calculus.

Prerequisites

Basic calculus or familiarity with differentiation and integration of real-valued functions.

Details

MATH X 451.37 – 268651  Introduction to Complex Analysis
Fall 2016
Time 7:00PM to 10:00PM
Dates Tuesdays, Sep 20, 2016 to Dec 06, 2016
Contact Hours 33.00
Location: UCLA, Math Sciences Building
Standard credit (3.9 units) $453.00
Instructor: Michael Miller
Register Now at UCLA

For many who will register, this certainly won’t be their first course with Dr. Miller — yes, he’s that good! But for the newcomers, I’ve written some thoughts and tips to help them more easily and quickly settle in and adjust:
Dr. Michael Miller Math Class Hints and Tips | UCLA Extension

I often recommend people to join in Mike’s classes and more often hear the refrain: “I’ve been away from math too long”, or “I don’t have the prerequisites to even begin to think about taking that course.” For people in those categories, you’re in luck! If you’ve even had a soupcon of calculus, you’ll be able to keep up here. In fact, it was a similar class exactly a decade ago by Mike Miller that got me back into mathematics. (Happy 10th math anniversary to me!)

I look forward to seeing everyone in the Fall!

Update 9/1/16

Textbook

Dr. Miller is back from summer vacation and emailed me this morning to say that he’s chosen the textbook for the class. We’ll be using Complex Analysis with Applications by Richard A. Silverman [1]

Complex Analysis with Applications by Richard A. Silverman

(Note that there’s another introductory complex analysis textbook from Silverman that’s offered through Dover, so be sure to choose the correct one.)

As always in Dr. Miller’s classes, the text is just recommended (read: not required) and in-class notes are more than adequate. To quote him directly, “We will be using as a basic guide, but, as always, supplemented by additional material and alternate ways of looking at things.”

The bonus surprise of his email: He’s doing two quarters of Complex Analysis! So we’ll be doing both the Fall and Winter Quarters to really get some depth in the subject!

Alternate textbooks

If you’re like me, you’ll probably take a look at some of the other common (and some more advanced) textbooks in the area. Since I’ve already compiled a list, I’ll share it:

Undergraduate

More advanced

References

[1]
R. A. Silverman, Complex Analysis with Applications, 1st ed. Dover Publications, Inc., 2010, pp. 304–304 [Online]. Available: http://amzn.to/2c7KaQy
[2]
J. Bak and D. J. Newman, Complex Analysis, 3rd ed. Springer, 2010, pp. 328–328 [Online]. Available: http://amzn.to/2bLPW89
[3]
T. Gamelin, Complex Analysis. Springer, 2003, pp. 478–478 [Online]. Available: http://amzn.to/2bGNQct
[4]
J. Brown and R. V. Churchill, Complex Variables and Applications, 8th ed. McGraw-Hill, 2008, pp. 468–468 [Online]. Available: http://amzn.to/2bLQWcu
[5]
E. B. Saff and A. D. Snider, Fundamentals of Complex Analysis with Applications to Engineering, Science, and Mathematics, 3rd ed. Pearson, 2003, pp. 563–563 [Online]. Available: http://amzn.to/2f3Nyj6
[6]
L. V. Ahlfors, Complex Analysis, 3rd ed. McGraw-Hill, 1979, pp. 336–336 [Online]. Available: http://amzn.to/2bMXrxm
[7]
S. Lang, Complex Analysis, 4th ed. Springer, 2003, pp. 489–489 [Online]. Available: http://amzn.to/2c7OaR0
[8]
J. B. Conway, Functions of One Complex Variable, 2nd ed. Springer, 1978, pp. 330–330 [Online]. Available: http://amzn.to/2cggbF1
[9]
El. M. Stein and R. Shakarchi, Complex Analysis. Princeton University Press, 2003, pp. 400–400 [Online]. Available: http://amzn.to/2bGOG9c

Introduction to Dynamical Systems and Chaos

Introduction to Dynamical Systems and Chaos (Summer, 2016)

About the Course:

In this course you’ll gain an introduction to the modern study of dynamical systems, the interdisciplinary field of applied mathematics that studies systems that change over time.

Topics to be covered include: phase space, bifurcations, chaos, the butterfly effect, strange attractors, and pattern formation. The course will focus on some of the realizations from the study of dynamical systems that are of particular relevance to complex systems:

  1. Dynamical systems undergo bifurcations, where a small change in a system parameter such as the temperature or the harvest rate in a fishery leads to a large and qualitative change in the system’s
    behavior.
  2. Deterministic dynamical systems can behave randomly. This property, known as sensitive dependence or the butterfly effect, places strong limits on our ability to predict some phenomena.
  3. Disordered behavior can be stable. Non-periodic systems with the butterfly effect can have stable average properties. So the average or statistical properties of a system can be predictable, even if its details are not.
  4. Complex behavior can arise from simple rules. Simple dynamical systems do not necessarily lead to simple results. In particular, we will see that simple rules can produce patterns and structures of surprising complexity.

About the Instructor:

content_headshotDavid Feldman is Professor of Physics and Mathematics at College of the Atlantic. From 2004-2009 he was a faculty member in the Santa Fe Institute’s Complex Systems Summer School in Beijing, China. He served as the school’s co-director from 2006-2009. Dave is the author of Chaos and Fractals: An Elementary Introduction (Oxford University Press, 2012), a textbook on chaos and fractals for students with a background in high school algebra. Dave was a U.S. Fulbright Lecturer in Rwanda in 2011-12.

Course dates:

5 Jul 2016 9am PDT to
20 Sep 2016 3pm PDT

Prerequisites:

A familiarity with basic high school algebra. There will be optional lessons for those with stronger math backgrounds.

Syllabus

  • Introduction I: Iterated Functions
  • Introduction II: Differential Equations
  • Chaos and the Butterfly Effect
  • Bifurcations: Part I (Differential Equations)
  • Bifurcations: Part II (Logistic Map)
  • Universality
  • Phase Space
  • Strange Attractors
  • Pattern Formation
  • Summary and Conclusions

Source: Complexity Explorer

https://www.youtube.com/watch?v=li_YSEvdvvg&feature=youtu.be

Calculating the Middle Ages?

Bookmarked Calculating the Middle Ages? The Project "Complexities and Networks in the Medieval Mediterranean and Near East" (COMMED) [1606.03433] (arxiv.org)
The project "Complexities and networks in the Medieval Mediterranean and Near East" (COMMED) at the Division for Byzantine Research of the Institute for Medieval Research (IMAFO) of the Austrian Academy of Sciences focuses on the adaptation and development of concepts and tools of network theory and complexity sciences for the analysis of societies, polities and regions in the medieval world in a comparative perspective. Key elements of its methodological and technological toolkit are applied, for instance, in the new project "Mapping medieval conflicts: a digital approach towards political dynamics in the pre-modern period" (MEDCON), which analyses political networks and conflict among power elites across medieval Europe with five case studies from the 12th to 15th century. For one of these case studies on 14th century Byzantium, the explanatory value of this approach is presented in greater detail. The presented results are integrated in a wider comparison of five late medieval polities across Afro-Eurasia (Byzantium, China, England, Hungary and Mamluk Egypt) against the background of the {guillemotright}Late Medieval Crisis{guillemotleft} and its political and environmental turmoil. Finally, further perspectives of COMMED are outlined.

Network and Complexity Theory Applied to History

This interesting paper (summary below) appears to apply network and complexity science to history and is sure to be of interest to those working at the intersection of some of these types of interdisciplinary studies. In particular, I’d be curious to see more coming out of this type of area to support theses written by scholars like Francis Fukuyama in the development of societal structures. Those interested in the emerging area of Big History are sure to enjoy this type of treatment. I’m also curious how researchers in economics (like Cesar Hidalgo) might make use of available(?) historical data in such related analyses. I’m curious if Dave Harris might consider such an analysis in his ancient Near East work?

Those interested in a synopsis of the paper might find some benefit from an overview from MIT Technology Review: How the New Science of Computational History Is Changing the Study of the Past.

16w5113: Stochastic and Deterministic Models for Evolutionary Biology | Banff International Research Station

Bookmarked Stochastic and Deterministic Models for Evolutionary Biology (Banff International Research Station)
A BIRS / Casa Matemática Oaxaca Workshop arriving in Oaxaca, Mexico Sunday, July 31 and departing Friday August 5, 2016

Evolutionary biology is a rapidly changing field, confronted to many societal problems of increasing importance: impact of global changes, emerging epidemics, antibiotic resistant bacteria… As a consequence, a number of new problematics have appeared over the last decade, challenging the existing mathematical models. There exists thus a demand in the biology community for new mathematical models allowing a qualitative or quantitative description of complex evolution problems. In particular, in the societal problems mentioned above, evolution is often interacting with phenomena of a different nature: interaction with other organisms, spatial dynamics, age structure, invasion processes, time/space heterogeneous environment… The development of mathematical models able to deal with those complex interactions is an ambitious task. Evolutionary biology is interested in the evolution of species. This process is a combination of several phenomena, some occurring at the individual level (e.g. mutations), others at the level of the entire population (competition for resources), often consisting of a very large number of individuals. the presence of very different scales is indeed at the core of theoretical evolutionary biology, and at the origin of many of the difficulties that biologists are facing. The development of new mathematical models thus requires a joint work of three different communities of researchers: specialists of partial differential equations, specialists of probability theory, and theoretical biologists. The goal of this workshop is to gather researchers from each of these communities, currently working on close problematics. Those communities have usually few interactions, and this meeting would give them the opportunity to discuss and work around a few biological thematics that are especially challenging mathematically, and play a crucial role for biological applications.

The role of a spatial structure in models for evolution: The introduction of a spatial structure in evolutionary biology models is often challenging. It is however well known that local adaptation is frequent in nature: field data show that the phenotypes of a given species change considerably across its range. The spatial dynamics of a population can also have a deep impact on its evolution. Assessing e.g. the impact of global changes on species requires the development of robust mathematical models for spatially structured populations.

The first type of models used by theoretical biologists for this type of problems are IBM (Individual Based Models), which describe the evolution of a finite number of individuals, characterized by their position and a phenotype. The mathematical analysis of IBM in spatially homogeneous situations has provided several methods that have been successful in the theoretical biology community (see the theory of Adaptive Dynamics). On the contrary, very few results exist so far on the qualitative properties of such models for spatially structured populations.

The second class of mathematical approach for this type of problem is based on ”infinite dimensional” reaction-diffusion: the population is structured by a continuous phenotypic trait, that affects its ability to disperse (diffusion), or to reproduce (reaction). This type of model can be obtained as a large population limit of IBM. The main difficulty of these models (in the simpler case of asexual populations) is the term modeling the competition from resources, that appears as a non local competition term. This term prevents the use of classical reaction diffusion tools such as the comparison principle and sliding methods. Recently, promising progress has been made, based on tools from elliptic equations and/or Hamilton-Jacobi equations. The effects of small populations can however not be observed on such models. The extension of these models and methods to include these effects will be discussed during the workshop.

Eco-evolution models for sexual populations:An essential question already stated by Darwin and Fisher and which stays for the moment without answer (although it continues to intrigue the evolutionary biologists) is: ”Why does sexual reproduction maintain?” Indeed this reproduction way is very costly since it implies a large number of gametes, the mating and the choice of a compatible partner. During the meiosis phasis, half of the genetical information is lost. Moreover, the males have to be fed and during the sexual mating, individual are easy preys for predators. A partial answer is that recombination plays a main role by better eliminating the deleterious mutations and by increasing the diversity. Nevertheless, this theory is not completely satisfying and many researches are devoted to understanding evolution of sexual populations and comparison between asexual and sexual reproduction. Several models exist to model the influence of sexual reproduction on evolving species. The difficulty compared to asexual populations is that a detailed description of the genetic basis of phenotypes is required, and in particular include recombinations. For sexual populations, recombination plays a main role and it is essential to understand. All models require strong biological simplifications, the development of relevant mathematical methods for such mechanisms then requires a joint work of mathematicians and biologists. This workshop will be an opportunity to set up such collaborations.

The first type of model considers a small number of diploid loci (typically one locus and two alleles), while the rest of the genome is considered as fixed. One can then define the fitness of every combination of alleles. While allowing the modeling of specific sexual effects (such as dominant/recessive alleles), this approach neglects the rest of the genome (and it is known that phenotypes are typically influenced by a large number of loci). An opposite approach is to consider a large number of loci, each locus having a small and additive impact on the considered phenotype. This approach then neglects many microscopic phenomena (epistasis, dominant/recessive alleles…), but allows the derivation of a deterministic model, called the infinitesimal model, in the case of a large population. The construction of a good mathematical framework for intermediate situation would be an important step forward.

The evolution of recombination and sex is very sensitive to the interaction between several evolutionary forces (selection, migration, genetic drift…). Modeling these interactions is particularly challenging and our understanding of the recombination evolution is often limited by strong assumptions regarding demography, the relative strength of these different evolutionary forces, the lack of spatial structure… The development of a more general theoretical framework based on new mathematical developments would be particularly valuable.

Another problem, that has received little attention so far and is worth addressing, is the modeling of the genetic material exchanges in asexual population. This phenomena is frequent in micro-organisms : horizontal gene transfers in bacteria, reassortment or recombination in viruses. These phenomena share some features with sexual reproduction. It would be interesting to see if the effect of this phenomena can be seen as a perturbation of existing asexual models. This would in particular be interesting in spatially structured populations (e.g. viral epidemics), since the the mathematical analysis of spatially structured asexual populations is improving rapidly.

Modeling in evolutionary epidemiology: Mathematical epidemiology has been developing since more than a century ago. Yet, the integration of population genetics phenomena to epidemiology is relatively recent. Microbial pathogens (bacteria and viruses) are particularly interesting organisms because their short generation times and large mutation rates allow them to adapt relatively fast to changing environments. As a consequence, ecological (demography) and evolutionary (population genetics) processes often occur at the same pace. This raises many interesting problems.

A first challenge is the modeling of the spatial dynamics of an epidemics. The parasites can evolve during the epidemics of a new host population, either to adapt to a heterogeneous environment, or because it will itself modify the environment as it invades. The applications of such studies are numerous: antibiotic management, agriculture… An aspect of this problem for which our workshop can bring a significant contribution (thanks to the diversity of its participants) is the evolution of the pathogen diversity. During the large expansion produced by an epidemics, there is a loss of diversity in the invading parasites, since most pathogens originate from a few parents. The development of mathematical models for those phenomena is challenging: only a small number of pathogens are present ahead of the epidemic front, while the number of parasites rapidly become very large after the infection. The interaction between a stochastic micro scale and a deterministic macro scale is apparent here, and deserves a rigorous mathematical analysis.

Another interesting phenomena is the effect of a sudden change of the environment on a population of pathogens. Examples of such situations are for instance the antibiotic treatment of an infected patients, or the transmission of a parasite to a new host species (transmission of the avian influenza to human beings, for instance). Related experiments are relatively easy to perform, and called evolutionary rescue experiments. So far, this question has received limited attention from the mathematical community. The key is to estimate the probability that a mutant well adapted to the new environment existed in the original population, or will appear soon after the environmental change. Interactions between biologists specialists of those questions and mathematicians should lead to new mathematical problems.