Peter Woit has just made the final draft (dated 10/25/16) of his new textbook Quantum Theory, Groups and Representations: An Introduction freely available for download from his website. It covers quantum theory with a heavy emphasis on groups and representation theory and “contains significant amounts of material not well-explained elsewhere.” He expects to finish up the diagrams and publish it next year some time, potentially through Springer.

Learn about quantum computation and quantum information in this advanced graduate level course from MIT.

About this course

Already know something about quantum mechanics, quantum bits and quantum logic gates, but want to design new quantum algorithms, and explore multi-party quantum protocols? This is the course for you!

In this advanced graduate physics course on quantum computation and quantum information, we will cover:

The formalism of quantum errors (density matrices, operator sum representations)

On the Origins of Life, Meaning, and the Universe Itself

I’m already a major chunk of the way through the book, having had an early ebook version of the text prior to publication. This is the published first edition with all the diagrams which I wanted to have prior to finishing my full review, which is forthcoming.

One thing I will mention is that it’s got quite a bit more philosophy in it than most popular science books with such a physics bent. Those who aren’t already up to speed on the math and science of modern physics can certainly benefit from the book (like most popular science books of its stripe, it doesn’t have any equations — hairy or otherwise), and it’s certain to help many toward becoming members of both of C.P. Snow’s two cultures. It might not be the best place for mathematicians and physicists to start moving toward the humanities with the included philosophy as the philosophy is very light and spotty in places and the explanations of the portions they’re already aware of may put them out a bit.

I’m most interested to see how he views complexity and thinking in the final portion of the text.

Running a brain-twisting thought experiment for real shows that information is a physical thing – so can we now harness the most elusive entity in the cosmos?

This is a nice little overview article of some of the history of thermodynamics relating to information in physics and includes some recent physics advances as well. There are a few references to applications in biology at the micro level as well.

Physicist Sean Carroll has a forthcoming book entitled The Big Picture: On the Origins of Life, Meaning, and the Universe Itself (Dutton, May 10, 2016) that will be of interest to many of our readers.

Prior to the holidays Sean wrote a blogpost that contains a full overview table of contents, which will give everyone a stronger idea of its contents. For convenience I’ll excerpt it below.

Springer recently announced the publication of the book Quantum Biological Information Theory by Ivan B. Djordjevic, in which I’m sure many readers here will have interest. I hope to have a review of it shortly after I’ve gotten a copy. Until then…

From the publisher’s website:

This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects.

Integrates quantum information and quantum biology concepts;

Assumes only knowledge of basic concepts of vector algebra at undergraduate level;

Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology;

Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models on tumor and cancer development, quantum modeling of bird navigation compass, quantum aspects of photosynthesis, quantum biological error correction.

"The Information Universe" Conference in The Netherlands in October hits several of the sweet spots for areas involving information theory, physics, the origin of life, complexity, computer science, and microbiology.

Yesterday, via a notification from Lanyard, I came across a notice for the upcoming conference “The Information Universe” which hits several of the sweet spots for areas involving information theory, physics, the origin of life, complexity, computer science, and microbiology. It is scheduled to occur from October 7-9, 2015 at the Infoversum Theater in Groningen, The Netherlands.

I’ll let their site speak for itself below, but they already have an interesting line up of speakers including:

Keynote speakers

Erik Verlinde, Professor Theoretical Physics, University of Amsterdam, Netherlands

Alex Szalay, Alumni Centennial Professor of Astronomy, The Johns Hopkins University, USA

Gerard ‘t Hooft, Professor Theoretical Physics, University of Utrecht, Netherlands

Gregory Chaitin, Professor Mathematics and Computer Science, Federal University of Rio de Janeiro, Brasil

Charley Lineweaver, Professor Astronomy and Astrophysics, Australian National University, Australia

Lude Franke, Professor System Genetics, University Medical Center Groningen, Netherlands

Conference synopsis from their homepage:

Additional details about the conference including the participants, program, venue, and registration can also be found at their website.

Amanda Peet presented the a lecture entitled "String Theory Legos for Black Holes" at the Perimeter Institute for Theoretical Physics.

Four decades ago, Stephen Hawking posed the black hole information paradox about black holes and quantum theory. It still challenges the imaginations of theoretical physicists today. Yesterday, Amanda Peet (University of Toronto) presented the a lecture entitled “String Theory Legos for Black Holes” yesterday at the Perimeter Institute for Theoretical Physics. A quick overview/teaser trailer for the lecture follows along with some additional information and the video of the lecture itself.

The “Information Paradox” with Amanda Peet (teaser trailer)

“Black holes are the ‘thought experiment’ par excellence, where the big three of physics – quantum mechanics, general relativity and thermodynamics – meet and fight it out, dragging in brash newcomers such as information theory and strings for support. Though a unification of gravity and quantum field theory still evades string theorists, many of the mathematical tools and ideas they have developed find applications elsewhere.

One of the most promising approaches to resolving the “information paradox” (the notion that nothing, not even information itself, survives beyond a black hole’s point-of-no-return event horizon) is string theory, a part of modern physics that has wiggled its way into the popular consciousness.

On May 6, 2015, Dr. Amanda Peet, a physicist at the University of Toronto, will describe how the string toolbox allows study of the extreme physics of black holes in new and fruitful ways. Dr. Peet will unpack that toolbox to reveal the versatility of strings and (mem)branes, and will explore the intriguing notion that the world may be a hologram.

Amanda Peet is an Associate Professor of Physics at the University of Toronto. She grew up in the South Pacific island nation of Aotearoa/New Zealand, and earned a B.Sc.(Hons) from the University of Canterbury in NZ and a Ph.D. from Stanford University in the USA. Her awards include a Radcliffe Fellowship from Harvard and an Alfred P. Sloan Foundation Research Fellowship. She was one of the string theorists interviewed in the three-part NOVA PBS TV documentary “Elegant Universe”.

Degradable quantum channels are among the only channels whose quantum and private classical capacities are known. As such, determining the structure of these channels is a pressing open question in quantum information theory. We give a comprehensive review of what is currently known about the structure of degradable quantum channels, including a number of new results as well as alternate proofs of some known results. In the case of qubits, we provide a complete characterization of all degradable channels with two dimensional output, give a new proof that a qubit channel with two Kraus operators is either degradable or anti-degradable, and present a complete description of anti-degradable unital qubit channels with a new proof. For higher output dimensions we explore the relationship between the output and environment dimensions (dB and dE, respectively) of degradable channels. For several broad classes of channels we show that they can be modeled with an environment that is “small” in the sense of ΦC. Such channels include all those with qubit or qutrit output, those that map some pure state to an output with full rank, and all those which can be represented using simultaneously diagonal Kraus operators, even in a non-orthogonal basis. Perhaps surprisingly, we also present examples of degradable channels with “large” environments, in the sense that the minimal dimension dE>dB. Indeed, one can have dE>14d2B. These examples can also be used to give a negative answer to the question of whether additivity of the coherent information is helpful for establishing additivity for the Holevo capacity of a pair of channels. In the case of channels with diagonal Kraus operators, we describe the subclasses that are complements of entanglement breaking channels. We also obtain a number of results for channels in the convex hull of conjugations with generalized Pauli matrices. However, a number of open questions remain about these channels and the more general case of random unitary channels.