Devastating News: Sol Golomb has apparently passed away on Sunday

I was getting concerned that I hadn’t heard back from Sol for a while, particularly after emailing him late last week, and then I ran across this notice through ITSOC & the IEEE:

Solomon W. Golomb (May 30, 1932 – May 1, 2016)

Shannon Award winner and long-time ITSOC member Solomon W. Golomb passed away on May 1, 2016.
Solomon W. Golomb was the Andrew Viterbi Chair in Electrical Engineering at the University of Southern California (USC) and was at USC since 1963, rising to the rank of University and Distinguished Professor. He was a member of the National Academies of Engineering and Science, and was awarded the National Medal of Science, the Shannon Award, the Hamming Medal, and numerous other accolades. As USC Dean Yiannis C. Yortsos wrote, “With unparalleled scholarly contributions and distinction to the field of engineering and mathematics, Sol’s impact has been extraordinary, transformative and impossible to measure. His academic and scholarly work on the theory of communications built the pillars upon which our modern technological life rests.”

In addition to his many contributions to coding and information theory, Professor Golomb was one of the great innovators in recreational mathematics, contributing many articles to Scientific American and other publications. More recent Information Theory Society members may be most familiar with his mathematics puzzles that appeared in the Society Newsletter, which will publish a full remembrance later.

A quick search a moment later revealed this sad confirmation along with some great photos from an award Sol received just a week ago:

As is common in academia, I’m sure it will take a few days for the news to drip out, but the world has certainly lost one of its greatest thinkers, and many of us have lost a dear friend, colleague, and mentor.

I’ll try touch base with his family and pass along what information sniff I can. I’ll post forthcoming obituaries as I see them, and will surely post some additional thoughts and reminiscences of my own in the coming days.

Golomb and national medal of science
President Barack Obama presents Solomon Golomb with the National Medal of Science at an awards ceremony held at the White House in 2013.

How Can We Apply Physics to Biology?

Bookmarked How Can We Apply Physics to Biology? by Philip Ball (nautil.us)
We don’t yet know quite what a physics of biology will consist of. But we won’t understand life without it.
This is an awesome little article with some interesting thought and philosophy on the current state of physics within biology and other related areas of study. It’s also got some snippets of history which aren’t frequently discussed in longer form texts.

Happy 100th Birthday Claude Shannon

Many regular readers here are sure to know who Claude Shannon is, but sadly most of the rest of the world is in the dark. To give you an idea of his importance in society and even a bit in pop culture, today’s Google doodle celebrates Shannon’s life and work.

Overview of Shannon’s Work

Most importantly, Shannon, in his 1937 Master’s Thesis at Massachusetts Institute of Technology applied George Boole’s algebra (better known now as Boolean Algebra) to electric circuits thereby making the modern digital revolution possible. To give you an idea of how far we’ve come, the typical high school student can now read and understand all of its content. If you’d like to give it a try, you can download it from MIT’s website.

His other huge accomplishment was a journal article he wrote in 1948 entitled “A Mathematical Theory of Communication” in the Bell Labs Journal. When it was republished a year later, one of the most notable changes was in the new title “The Mathematical Theory of Communication.” While copies of the original article are freely available on the internet, the more casual reader will appreciate the more recent edition from MIT Press which also includes a fabulous elucidative and extensive opening written by Warren Weaver. This paper contains the theoretical underpinning that allowed for the efflorescence of all modern digital communication to occur. It ranks as one of the most influential and far-reaching documents in human history rivaling even the Bible.

Further, my own excitement in Shannon stems in part from his Ph.D. thesis “An Algebra for Theoretical Genetics” (1940) which has inspired most of the theoretical material I’m always contemplating.

Google Doodle Art animated by artist Nate Swinehart celebrates Claude Shannon's 100th Birthday
Google Doodle Art animated by artist Nate Swinehart celebrates Claude Shannon’s 100th Birthday

Additional Sources:

For those looking for more information try some of the following (non-technical) sources:

Claude Elwood Shannon smoking

Some Thoughts on Academic Publishing and “Who’s downloading pirated papers? Everyone” from Science | AAAS

Bookmarked Who's downloading pirated papers? Everyone by John Bohannon (Science | AAAS)
An exclusive look at data from the controversial web site Sci-Hub reveals that the whole world, both poor and rich, is reading pirated research papers.

Sci Hub has been in the news quite a bit over the past half a year and the bookmarked article here gives some interesting statistics. I’ll preface some of the following editorial critique with the fact that I love John Bohannon’s work; I’m glad he’s spent the time to do the research he has. Most of the rest of the critique is aimed at the publishing industry itself.

From a journalistic standpoint, I find it disingenuous that the article didn’t actually hyperlink to Sci Hub. Neither did it link out (or provide a full quote) to Alicia Wise’s Twitter post(s) nor link to her rebuttal list of 20 ways to access their content freely or inexpensively. Of course both of these are editorial related, and perhaps the rebuttal was so flimsy as to be unworthy of a link from such an esteemed publication anyway.

Sadly, Elsevier’s list of 20 ways of free/inexpensive access doesn’t really provide any simple coverage for graduate students or researchers in poorer countries which are the likeliest group of people using Sci Hub, unless they’re going to fraudulently claim they’re part of a class which they’re not, and is this morally any better than the original theft method? It’s almost assuredly never used by patients, which seem to be covered under one of the options, as the option to do so is painfully undiscoverable past their typical $30/paper firewalls. Their patchwork hodgepodge of free access is so difficult to not only discern, but one must keep in mind that this is just one of dozens of publishers a researcher must navigate to find the one thing they’re looking for right now (not to mention the thousands of times they need to do this throughout a year, much less a career).

Consider this experiment, which could be a good follow up to the article: is it easier to find and download a paper by title/author/DOI via Sci Hub (a minute) versus through any of the other publishers’ platforms with a university subscription (several minutes) or without a subscription (an hour or more to days)? Just consider the time it would take to dig up every one of 30 references in an average journal article: maybe just a half an hour via Sci Hub versus the days and/or weeks it would take to jump through the multiple hoops to first discover, read about, and then gain access and then download them from the over 14 providers (and this presumes the others provide some type of “access” like Elsevier).

Those who lived through the Napster revolution in music will realize that the dead simplicity of their system is primarily what helped kill the music business compared to the ecosystem that exists now with easy access through the multiple streaming sites (Spotify, Pandora, etc.) or inexpensive paid options like (iTunes). If the publishing business doesn’t want to get completely killed, they’re going to need to create the iTunes of academia. I suspect they’ll have internal bean-counters watching the percentage of the total (now apparently 5%) and will probably only do something before it passes a much larger threshold, though I imagine that they’re really hoping that the number stays stable which signals that they’re not really concerned. They’re far more likely to continue to maintain their status quo practices.

Some of this ease-of-access argument is truly borne out by the statistics of open access papers which are downloaded by Sci Hub–it’s simply easier to both find and download them that way compared to traditional methods; there’s one simple pathway for both discovery and download. Surely the publishers, without colluding, could come up with a standardized method or protocol for finding and accessing their material cheaply and easily?

“Hart-Davidson obtained more than 100 years of biology papers the hard way—legally with the help of the publishers. ‘It took an entire year just to get permission,’ says Thomas Padilla, the MSU librarian who did the negotiating.” John Bohannon in Who’s downloading pirated papers? Everyone

Personally, I use use relatively advanced tools like LibX, which happens to be offered by my institution and which I feel isn’t very well known, and it still takes me longer to find and download a paper than it would via Sci Hub. God forbid if some enterprising hacker were to create a LibX community version for Sci Hub. Come to think of it, why haven’t any of the dozens of publishers built and supported simple tools like LibX which make their content easy to access? If we consider the analogy of academic papers to the introduction of machine guns in World War I, why should modern researchers still be using single-load rifles against an enemy that has access to nuclear weaponry?

My last thought here comes on the heels of the two tweets from Alicia Wise mentioned, but not shown in the article:

She mentions that the New York Times charges more than Elsevier does for a full subscription. This is tremendously disingenuous as Elsevier is but one of dozens of publishers for which one would have to subscribe to have access to the full panoply of material researchers are typically looking for. Further, Elsevier nor their competitors are making their material as easy to find and access as the New York Times does. Neither do they discount access to the point that they attempt to find the subscription point that their users find financially acceptable. Case in point: while I often read the New York Times, I rarely go over their monthly limit of articles to need any type of paid subscription. Solely because they made me an interesting offer to subscribe for 8 weeks for 99 cents, I took them up on it and renewed that deal for another subsequent 8 weeks. Not finding it worth the full $35/month price point I attempted to cancel. I had to cancel the subscription via phone, but why? The NYT customer rep made me no less than 5 different offers at ever decreasing price points–including the 99 cents for 8 weeks which I had been getting!!–to try to keep my subscription. Elsevier, nor any of their competitors has ever tried (much less so hard) to earn my business. (I’ll further posit that it’s because it’s easier to fleece at the institutional level with bulk negotiation, a model not too dissimilar to the textbook business pressuring professors on textbook adoption rather than trying to sell directly the end consumer–the student, which I’ve written about before.)

(Trigger alert: Apophasis to come) And none of this is to mention the quality control that is (or isn’t) put into the journals or papers themselves. Fortunately one need’t even go further than Bohannon’s other writings like Who’s Afraid of Peer Review? Then there are the hordes of articles on poor research design and misuse of statistical analysis and inability to repeat experiments. Not to give them any ideas, but lately it seems like Elsevier buying the Enquirer and charging $30 per article might not be a bad business decision. Maybe they just don’t want to play second-banana to TMZ?

Interestingly there’s a survey at the end of the article which indicates some additional sources of academic copyright infringement. I do have to wonder how the data for the survey will be used? There’s always the possibility that logged in users will be indicating they’re circumventing copyright and opening themselves up to litigation.

I also found the concept of using the massive data store as a means of applied corpus linguistics for science an entertaining proposition. This type of research could mean great things for science communication in general. I have heard of people attempting to do such meta-analysis to guide the purchase of potential intellectual property for patent trolling as well.

Finally, for those who haven’t done it (ever or recently), I’ll recommend that it’s certainly well worth their time and energy to attend one or more of the many 30-60 minute sessions most academic libraries offer at the beginning of their academic terms to train library users on research tools and methods. You’ll save yourself a huge amount of time.

Physicists Hunt For The Big Bang’s Triangles | Quanta Magazine

Bookmarked Physicists Hunt for the Big Bang'€™s Triangles (Quanta Magazine )

“The notion that counting more shapes in the sky will reveal more details of the Big Bang is implied in a central principle of quantum physics known as “unitarity.” Unitarity dictates that the probabilities of all possible quantum states of the universe must add up to one, now and forever; thus, information, which is stored in quantum states, can never be lost — only scrambled. This means that all information about the birth of the cosmos remains encoded in its present state, and the more precisely cosmologists know the latter, the more they can learn about the former.”

Saddened to hear of the passing of Sir David J.C. MacKay, FRS

Earlier this morning, I was saddened to hear that one of my information theory heroes passed away today.

David MacKay blackboard

I’ve been following a Google Alert for “information theory,” and so on an almost a daily basis for over 15 years I’ve seen thousands of notices and references to his excellent textbook Information Theory, Inference, and Learning Algorithms, which he kindly chose to freely share with the world. It’s really a great little textbook, and I recommend that everyone download it or purchase it and give it a read. In addition he has a fabulous series of video lectures to go with it as well. (Someone had actually asked me for information theory lectures on Quora last week, and his are some of the best.)

An instant classic, covering everything from Shannon’s fundamental theorems to the postmodern theory of LDPC codes. You’ll want two copies of this astonishing book, one for the office and one for the fireside at home.

Bob McEliece, information theorist and professor, California Institute of Technology

 
Information Theory, Inference and Learning Algorithms

Sir David J.C. MacKay was the Regius Professor of Engineering at Cambridge University and a former professor of natural philosophy in the Department of Physics at at Cavendish Laboratory, University of Cambridge. He was also a leading figure in energy and climate change having written the accessible and highly praised book Sustainable Energy: Without all the Hot Air, which is also available for free on his site. In 2009 he was appointed to a five year term as Chief Scientific Advisor of the Department of Energy and Climate Change, United Kingdom.

His TED talk will give you an idea of some of his work in this area:

MacKay was elected a Fellow of the Royal Society in 2009. His nomination reads:

David MacKay introduced more efficient types of error-correcting code that are now used in satellite communications, digital broadcasting and magnetic recording. He advanced the field of Machine Learning by providing a sound Bayesian foundation for artificial neural networks. Using this foundation, he significantly improved their performance, allowing them to be used for designing new types of steel that are now used in power stations. He used his expertise in information theory to design a widely used interface called “dasher” that allows disabled people to write efficiently using a single finger or head-mounted pointer.

Sir David MacKay was knighted in the 2016 New Year Honours for services to scientific advice in government and to science outreach.

For those interested, he a great little blog. Here’s his last blogpost.

Below, from a variety of information theorists, mathematicians, and scientists is just the beginning of the outpouring of loss the world is experiencing today:



RIP David MacKay, former DECC Chief Scientific Adviser. He was passionate, original, brave. A truly good man. Deep condolences to his family

— Ed Miliband (@Ed_Miliband) April 14, 2016

A new view of the tree of life

Bookmarked A new view of the tree of life (Nature Microbiology)
An update to the €˜tree of life has revealed a dominance of bacterial diversity in many ecosystems and extensive evolution in some branches of the tree. It also highlights how few organisms we have been able to cultivate for further investigation.

Abstract

The tree of life is one of the most important organizing principles in biology. Gene surveys suggest the existence of an enormous number of branches, but even an approximation of the full scale of the tree has remained elusive. Recent depictions of the tree of life have focused either on the nature of deep evolutionary relationships or on the known, well-classified diversity of life with an emphasis on eukaryotes. These approaches overlook the dramatic change in our understanding of life’s diversity resulting from genomic sampling of previously unexamined environments. New methods to generate genome sequences illuminate the identity of organisms and their metabolic capacities, placing them in community and ecosystem contexts. Here, we use new genomic data from over 1,000 uncultivated and little known organisms, together with published sequences, to infer a dramatically expanded version of the tree of life, with Bacteria, Archaea and Eukarya included. The depiction is both a global overview and a snapshot of the diversity within each major lineage. The results reveal the dominance of bacterial diversification and underline the importance of organisms lacking isolated representatives, with substantial evolution concentrated in a major radiation of such organisms. This tree highlights major lineages currently underrepresented in biogeochemical models and identifies radiations that are probably important for future evolutionary analyses.

Laura A. Hug, Brett J. Baker, Karthik Anantharaman, Christopher T. Brown, Alexander J. Probst, Cindy J. Castelle, Cristina N. Butterfield, Alex W. Hernsdorf, Yuki Amano, Kotaro Ise, Yohey Suzuki, Natasha Dudek, David A. Relman, Kari M. Finstad, Ronald Amundson, Brian C. Thomas & Jillian F. Banfield in Nature Microbiology, Article number: 16048 (2016) doi:10.1038/nmicrobiol.2016.48

 

A reformatted view of the tree in Fig. 1in which each major lineage represents the same amount of evolutionary distance.
A reformatted view of the tree in Fig. 1in which each major lineage represents the same amount of evolutionary distance.

Carl Zimmer also has a nice little write up of the paper in today’s New York Times:

Carl Zimmer
in Scientists Unveil New ‘Tree of Life’ from The New York Times 4/11/16

 

Online Lectures in Information Theory

Replied to Where can I find good online lectures in information theory? (quora.com)
There aren’t a lot of available online lectures on the subject of information theory, but here are the ones I’m currently aware of:

Introductory

Advanced

Fortunately, most are pretty reasonable, though vary in their coverage of topics. The introductory lectures don’t require as much mathematics and can probably be understood by those at the high school level with just a small amount of basic probability theory and an understanding of the logarithm.

The top three in the advanced section (they generally presume a prior undergraduate level class in probability theory and some amount of mathematical sophistication) are from professors who’ve written some of the most commonly used college textbooks on the subject. If I recall a first edition of the Yeung text was available via download through his course interface. MacKay’s text is available for free download from his site as well.

Feel free to post other video lectures or resources you may be aware of in the comments below.

Editor’s Update: With sadness, I’ll note that David MacKay died just days after this was originally posted.

“ALOHA to the Web”: Dr. Norm Abramson to give 2016 Viterbi Lecture at USC

Bookmarked USC - Viterbi School of Engineering - Dr. Norm Abramson (viterbi.usc.edu)

“ALOHA to the Web”

Dr. Norman Abramson, Professor Emeritus, University of Hawaii

Lecture Information

Thursday, April 14, 2016
Hughes Electrical Engineering Center (EEB)
Reception 3:00pm (EEB Courtyard)
Lecture 4:00pm (EEB 132)

Abstract

Wireless access to the Internet today is provided predominantly by random access ALOHA channels connecting a wide variety of user devices. ALOHA channels were first analyzed, implemented and demonstrated in the ALOHA network at the University of Hawaii in June, 1971. Information Theory has provided a constant guide for the design of more efficient channels and network architectures for ALOHA access to the web.

In this talk we examine the architecture of networks using ALOHA channels and the statistics of traffic within these channels. That traffic is composed of user and app oriented information augmented by protocol information inserted for the benefit of network operation. A simple application of basic Information Theory can provide a surprising guide to the amount of protocol information required for typical web applications.

We contrast this theoretical guide of the amount of protocol information required with measurements of protocol generated information taken on real network traffic. Wireless access to the web is not as efficient as you might guess.

Biography

Norman Abramson received an A.B. in physics from Harvard College in 1953, an M.A. in physics from UCLA in 1955, and a Ph.D. in Electrical Engineering from Stanford in 1958.

He was an assistant professor and associate professor of electrical engineering at Stanford from 1958 to 1965. From 1967 to 1995 he was Professor of Electrical Engineering, Professor of Information and Computer Science, Chairman of the Department of Information and Computer Science, and Director of the ALOHA System at the University of Hawaii in Honolulu. He is now Professor Emeritus of Electrical Engineering at the University of Hawaii. He has held visiting appointments at Berkeley (1965), Harvard (1966) and MIT (1980).

Abramson is the recipient of several major awards for his work on random access channels and the ALOHA Network, the first wireless data network. The ALOHA Network went into operation in Hawaii in June, 1971. Among these awards are the Eduard Rhein Foundation Technology Award (Munich, 2000), the IEEE Alexander Graham Bell Medal (Philadelphia, 2007) and the NEC C&C Foundation Award (Tokyo, 2011).

2016 North-American School of Information Theory, June 21-23

Bookmarked 2016 North-American School of Information Theory, June 21-23, 2016 (itsoc.org)

The 2016 School of information will be hosted at Duke University, June 21-23. It is sponsored by the IEEE Information Theory Society, Duke University, the Center for Science of Information, and the National Science Foundation. The school provides a venue where doctoral and postdoctoral students can learn from distinguished professors in information theory, meet with fellow researchers, and form collaborations.

Program and Lectures

The daily schedule will consist of morning and afternoon lectures separated by a lunch break with poster sessions. Students from all research areas are welcome to attend and present their own research via a poster during the school.  The school will host lectures on core areas of information theory and interdisciplinary topics. The following lecturers are confirmed:

  • Helmut Bölcskei (ETH Zurich): The Mathematics of Deep Learning
  • Natasha Devroye (University of Illinois, Chicago): The Interference Channel
  • René Vidal (Johns Hopkins University): Global Optimality in Deep Learning and Beyond
  • Tsachy Weissman (Stanford University): Information Processing under Logarithmic Loss
  • Aylin Yener (Pennsylvania State University): Information-Theoretic Security

Logistics

Applications will be available on March 15 and will be evaluated starting April 1.  Accepted students must register by May 15, 2016.  The registration fee of $200 will include food and 3 nights accommodation in a single-occupancy room.  We suggest that attendees fly into the Raleigh-Durham (RDU) airport located about 30 minutes from the Duke campus. Housing will be available for check-in on the afternoon of June 20th.  The main part of the program will conclude after lunch on June 23rd so that attendees can fly home that evening.

To Apply: click “register” here (fee will accepted later after acceptance)

Administrative Contact: Kathy Peterson, itschool2016@gmail.com

Organizing Committee

Henry Pfister (chair) (Duke University), Dror Baron (North Carolina State University), Matthieu Bloch (Georgia Tech), Rob Calderbank (Duke University), Galen Reeves (Duke University). Advisors: Gerhard Kramer (Technical University of Munich) and Andrea Goldsmith (Stanford)

Sponsors

@DuttonBooks What?! No appearances in his own back yard in Los Angeles? Let’s fix this…

Replied to a tweet by Dutton Books Dutton Books (Twitter)
Want to discover #TheBigPicture? Secure your spot now for one of @seanmcarroll's book tour events this May! pic.twitter.com/JvEMoW6j45
@DuttonBooks What?! No appearances in his own back yard in Los Angeles? Let’s fix this…

Introduction to Information Theory | SFI’s Complexity Explorer

Many readers often ask me for resources for delving into the basics of information theory. I hadn’t posted it before, but the Santa Fe Institute recently had an online course Introduction to Information Theory through their Complexity Explorer, which has some other excellent offerings. It included videos, fora, and other resources and was taught by the esteemed physicist and professor Seth Lloyd. There are a number of currently active students still learning and posting there.

Introduction to Information Theory

About the Tutorial:

This tutorial introduces fundamental concepts in information theory. Information theory has made considerable impact in complex systems, and has in part co-evolved with complexity science. Research areas ranging from ecology and biology to aerospace and information technology have all seen benefits from the growth of information theory.

In this tutorial, students will follow the development of information theory from bits to modern application in computing and communication. Along the way Seth Lloyd introduces valuable topics in information theory such as mutual information, boolean logic, channel capacity, and the natural relationship between information and entropy.

Lloyd coherently covers a substantial amount of material while limiting discussion of the mathematics involved. When formulas or derivations are considered, Lloyd describes the mathematics such that less advanced math students will find the tutorial accessible. Prerequisites for this tutorial are an understanding of logarithms, and at least a year of high-school algebra.

About the Instructor(s):

Professor Seth Lloyd is a principal investigator in the Research Laboratory of Electronics (RLE) at the Massachusetts Institute of Technology (MIT). He received his A.B. from Harvard College in 1982, the Certificate of Advanced Study in Mathematics (Part III) and an M. Phil. in Philosophy of Science from Cambridge University in 1983 and 1984 under a Marshall Fellowship, and a Ph.D. in Physics in 1988 from Rockefeller University under the supervision of Professor Heinz Pagels.

From 1988 to 1991, Professor Lloyd was a postdoctoral fellow in the High Energy Physics Department at the California Institute of Technology, where he worked with Professor Murray Gell-Mann on applications of information to quantum-mechanical systems. From 1991 to 1994, he was a postdoctoral fellow at Los Alamos National Laboratory, where he worked at the Center for Nonlinear Systems on quantum computation. In 1994, he joined the faculty of the Department of Mechanical Engineering at MIT. Since 1988, Professor Lloyd has also been an adjunct faculty member at the Sante Fe Institute.

Professor Lloyd has performed seminal work in the fields of quantum computation and quantum communications, including proposing the first technologically feasible design for a quantum computer, demonstrating the viability of quantum analog computation, proving quantum analogs of Shannon’s noisy channel theorem, and designing novel methods for quantum error correction and noise reduction.

Professor Lloyd is a member of the American Physical Society and the Amercian Society of Mechanical Engineers.

Tutorial Team:

Yoav Kallus is an Omidyar Fellow at the Santa Fe Institute. His research at the boundary of statistical physics and geometry looks at how and when simple interactions lead to the formation of complex order in materials and when preferred local order leads to system-wide disorder. Yoav holds a B.Sc. in physics from Rice University and a Ph.D. in physics from Cornell University. Before joining the Santa Fe Institute, Yoav was a postdoctoral fellow at the Princeton Center for Theoretical Science in Princeton University.

How to use Complexity Explorer: How to use Complexity Explore
Prerequisites: At least one year of high-school algebra
Like this tutorial? 


Syllabus

  1. Introduction
  2. Forms of Information
  3. Information and Probability
  4. Fundamental Formula of Information
  5. Computation and Logic: Information Processing
  6. Mutual Information
  7. Communication Capacity
  8. Shannon’s Coding Theorem
  9. The Manifold Things Information Measures
  10. Homework

Devourer of Encyclopedias: Stanislaw Lem’s “Summa Technologiae”

Read Devourer of Encyclopedias: Stanislaw Lem's "Summa Technologiae" (The Los Angeles Review of Books)
A review of Summa Technologiae by Stanislaw Lem by David Auerbach from the Los Angeles Review of Books.

Summa Technologiae

AT LAST WE have it in English. Summa Technologiae, originally published in Polish in 1964, is the cornerstone of Stanislaw Lem’s oeuvre, his consummate work of speculative nonfiction. Trained in medicine and biology, Lem synthesizes the current science of the day in ways far ahead of most science fiction of the time.

His subjects, among others, include:

  • Virtual reality
  • Artificial intelligence
  • Nanotechnology and biotechnology
  • Evolutionary biology and evolutionary psychology
  • Artificial life
  • Information theory
  • Entropy and thermodynamics
  • Complexity theory, probability, and chaos
  • Population and ecological catastrophe
  • The “singularity” and “transhumanism”

Source: Devourer of Encyclopedias: Stanislaw Lem’s “Summa Technologiae” – The Los Angeles Review of Books

I came across this book review quite serendipitously today via an Auerbach article in Slate, which I’ve bookmarked. I found a copy of the book and have added it to the top of my reading pile. As I’m currently reading an advance reader edition of Sean Carroll’s The Big Picture, I can only imagine how well the two may go together despite being written nearly 60 years apart.

Can a Field in Which Physicists Think Like Economists Help Us Achieve Universal Knowledge?

Bookmarked Can a Field in Which Physicists Think Like Economists Help Us Achieve Universal Knowledge? by David Auerbach (Slate Magazine)
The Theory of Everything and Then Some: In complexity theory, physicists try to understand economics while sociologists think like biologists. Can they bring us any closer to universal knowledge?

A discussion of complexity and complexity theorist John H. Miller’s new book: A Crude Look at the Whole: The Science of Complex Systems in Business, Life, and Society.