Checkin Mathematical Sciences Building, UCLA

Complex Analysis part II

The walkway up to Math Sciences and the beautiful old tree outside.

I wish I had a living room with as many math books as this mini-library has.

JUMP Math, a teaching method that’s proving there’s no such thing as a bad math student | Quartz

Read A mathematician has created a teaching method that’s proving there’s no such thing as a bad math student (Quartz)
"Mathematicians have big egos, so they haven’t told anyone that math is easy.”
Continue reading JUMP Math, a teaching method that’s proving there’s no such thing as a bad math student | Quartz

Checkin Mathematical Sciences Building, UCLA

It’s true what they say, “Complex Analysis IS for lovers.” #theoremoncanonicalproducts #HappyValentinesDay

The Tuesday night meeting of the lonely hearts club aka Math Lovers Anonymous.

🔖 IPAM Workshop on Gauge Theory and Categorification, March 6-10

Bookmarked IPAM Workshop on Gauge Theory and Categorification (Institute of Pure and Applied Mathematics at UCLA - March 6-10, 2017)
The equations of gauge theory lie at the heart of our understanding of particle physics. The Standard Model, which describes the electromagnetic, weak, and strong forces, is based on the Yang-Mills equations. Starting with the work of Donaldson in the 1980s, gauge theory has also been successfully applied in other areas of pure mathematics, such as low dimensional topology, symplectic geometry, and algebraic geometry.

More recently, Witten proposed a gauge-theoretic interpretation of Khovanov homology, a knot invariant whose origins lie in representation theory. Khovanov homology is a “categorification” of the celebrated Jones polynomial, in the sense that its Euler characteristic recovers this polynomial. At the moment, Khovanov homology is only defined for knots in the three-sphere, but Witten’s proposal holds the promise of generalizations to other three-manifolds, and perhaps of producing new invariants of four-manifolds.

This workshop will bring together researchers from several different fields (theoretical physics, mathematical gauge theory, topology, analysis / PDE, representation theory, symplectic geometry, and algebraic geometry), and thus help facilitate connections between these areas. The common focus will be to understand Khovanov homology and related invariants through the lens of gauge theory.

This workshop will include a poster session; a request for posters will be sent to registered participants in advance of the workshop.
Edward Witten will be giving two public lectures as part of the Green Family Lecture series:

March 6, 2017
From Gauge Theory to Khovanov Homology Via Floer Theory
The goal of the lecture is to describe a gauge theory approach to Khovanov homology of knots, in particular, to motivate the relevant gauge theory equations in a way that does not require too much physics background. I will give a gauge theory perspective on the construction of singly-graded Khovanov homology by Abouzaid and Smith.

March 8, 2017
An Introduction to the SYK Model
The Sachdev-Ye model was originally a model of quantum spin liquids that was introduced in the mid-1990′s. In recent years, it has been reinterpreted by Kitaev as a model of quantum chaos and black holes. This lecture will be primarily a gentle introduction to the SYK model, though I will also describe a few more recent results.

Entropy | Special Issue: Maximum Entropy and Bayesian Methods

Bookmarked Entropy | Special Issue : Maximum Entropy and Bayesian Methods (mdpi.com)
Open for submission now
Deadline for manuscript submissions: 31 August 2017

A special issue of Entropy (ISSN 1099-4300).

Deadline for manuscript submissions: 31 August 2017

Special Issue Editor


Guest Editor
Dr. Brendon J. Brewer

 

Department of Statistics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
Website | E-MailPhone: +64275001336
Interests: bayesian inference, markov chain monte carlo, nested sampling, MaxEnt

Special Issue Information

Dear Colleagues,

Whereas Bayesian inference has now achieved mainstream acceptance and is widely used throughout the sciences, associated ideas such as the principle of maximum entropy (implicit in the work of Gibbs, and developed further by Ed Jaynes and others) have not. There are strong arguments that the principle (and variations, such as maximum relative entropy) is of fundamental importance, but the literature also contains many misguided attempts at applying it, leading to much confusion.

This Special Issue will focus on Bayesian inference and MaxEnt. Some open questions that spring to mind are: Which proposed ways of using entropy (and its maximisation) in inference are legitimate, which are not, and why? Where can we obtain constraints on probability assignments, the input needed by the MaxEnt procedure?

More generally, papers exploring any interesting connections between probabilistic inference and information theory will be considered. Papers presenting high quality applications, or discussing computational methods in these areas, are also welcome.

Dr. Brendon J. Brewer
Guest Editor

Submission

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. Papers will be published continuously (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are refereed through a peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Entropy is an international peer-reviewed Open Access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1500 CHF (Swiss Francs).

No papers have been published in this special issue yet.

The Map of Mathematics: Animation Shows How All the Different Fields in Math Fit Together | Open Culture

Read The Map of Mathematics: Animation Shows How All the Different Fields in Math Fit Together Open Culture (openculture.com)
Continue reading The Map of Mathematics: Animation Shows How All the Different Fields in Math Fit Together | Open Culture

🔖 A de Bruijn identity for discrete random variables by Oliver Johnson, Saikat Guha

Bookmarked A de Bruijn identity for discrete random variables by Oliver Johnson, Saikat Guha (arxiv.org)
We discuss properties of the "beamsplitter addition" operation, which provides a non-standard scaled convolution of random variables supported on the non-negative integers. We give a simple expression for the action of beamsplitter addition using generating functions. We use this to give a self-contained and purely classical proof of a heat equation and de Bruijn identity, satisfied when one of the variables is geometric.

Jordan Ellenberg don’t know stat | Rick’s Ramblings

Read Jordan Ellenberg don’t know stat by Rick Durrett, Ph.D. (Rick's Ramblings sites.duke.edu)
There follows a discussion of flipping coins and the fact that frequencies have more random variation when the sample size is small, but he never stops to see if this is enough to explain the observation.

My intuition told me it did not, so I went and got some brain cancer data.
Jordan Ellenberg is called out a bit by Rick Durrett for one of his claims in the best seller How Not To Be Wrong: The Power of Mathematical Thinking.

I remember reading that section of the book and mostly breezing through that argument primarily as a simple example with a limited, but direct point. Durrett decided to delve into the applied math a bit further.

These are some of the subtle issues one eventually comes across when experts read others’ works which were primarily written for much broader audiences.

I also can’t help thinking that one paints a target on one’s back with a book title like that…

BTW, the quote of the day has to be:

… so I went and got some brain cancer data.

NIMBioS Tutorial: Uncertainty Quantification for Biological Models

Bookmarked NIMBioS Tutorial: Uncertainty Quantification for Biological Models (nimbios.org)
NIMBioS will host an Tutorial on Uncertainty Quantification for Biological Models

Uncertainty Quantification for Biological Models

Meeting dates: June 26-28, 2017
Location: NIMBioS at the University of Tennessee, Knoxville

Organizers:
Marisa Eisenberg, School of Public Health, Univ. of Michigan
Ben Fitzpatrick, Mathematics, Loyola Marymount Univ.
James Hyman, Mathematics, Tulane Univ.
Ralph Smith, Mathematics, North Carolina State Univ.
Clayton Webster, Computational and Applied Mathematics (CAM), Oak Ridge National Laboratory; Mathematics, Univ. of Tennessee

Objectives:
Mathematical modeling and computer simulations are widely used to predict the behavior of complex biological phenomena. However, increased computational resources have allowed scientists to ask a deeper question, namely, “how do the uncertainties ubiquitous in all modeling efforts affect the output of such predictive simulations?” Examples include both epistemic (lack of knowledge) and aleatoric (intrinsic variability) uncertainties and encompass uncertainty coming from inaccurate physical measurements, bias in mathematical descriptions, as well as errors coming from numerical approximations of computational simulations. Because it is essential for dealing with realistic experimental data and assessing the reliability of predictions based on numerical simulations, research in uncertainty quantification (UQ) ultimately aims to address these challenges.

Uncertainty quantification (UQ) uses quantitative methods to characterize and reduce uncertainties in mathematical models, and techniques from sampling, numerical approximations, and sensitivity analysis can help to apportion the uncertainty from models to different variables. Critical to achieving validated predictive computations, both forward and inverse UQ analysis have become critical modeling components for a wide range of scientific applications. Techniques from these fields are rapidly evolving to keep pace with the increasing emphasis on models that require quantified uncertainties for large-scale applications. This tutorial will focus on the application of these methods and techniques to mathematical models in the life sciences and will provide researchers with the basic concepts, theory, and algorithms necessary to quantify input and response uncertainties and perform sensitivity analysis for simulation models. Concepts to be covered may include: probability and statistics, parameter selection techniques, frequentist and Bayesian model calibration, propagation of uncertainties, quantification of model discrepancy, adaptive surrogate model construction, high-dimensional approximation, random sampling and sparse grids, as well as local and global sensitivity analysis.

This tutorial is intended for graduate students, postdocs and researchers in mathematics, statistics, computer science and biology. A basic knowledge of probability, linear algebra, and differential equations is assumed.

Descriptive Flyer

Application deadline: March 1, 2017
To apply, you must complete an application on our online registration system:

  1. Click here to access the system
  2. Login or register
  3. Complete your user profile (if you haven’t already)
  4. Find this tutorial event under Current Events Open for Application and click on Apply

Participation in NIMBioS tutorials is by application only. Individuals with a strong interest in the topic are encouraged to apply, and successful applicants will be notified within two weeks after the application deadline. If needed, financial support for travel, meals, and lodging is available for tutorial attendees.

Summary Report. TBA

Live Stream. The Tutorial will be streamed live. Note that NIMBioS Tutorials involve open discussion and not necessarily a succession of talks. In addition, the schedule as posted may change during the Workshop. To view the live stream, visit http://www.nimbios.org/videos/livestream. A live chat of the event will take place via Twitter using the hashtag #uncertaintyTT. The Twitter feed will be displayed to the right of the live stream. We encourage you to post questions/comments and engage in discussion with respect to our Social Media Guidelines.


Source: NIMBioS Tutorial: Uncertainty Quantification for Biological Models

Walter B. Rudin: "Set Theory: An Offspring of Analysis"

Bookmarked Set Theory: An Offspring of Analysis (YouTube)
Prof. Walter B. Rudin presents the lecture, "Set Theory: An Offspring of Analysis." Prof. Jay Beder introduces Prof. Dattatraya J. Patil who introduces Prof....

MyScript MathPad for LaTeX and Livescribe

Bookmarked MyScript MathPad for LaTeX (myscript.com)
MyScript MathPad is a mathematic expression demonstration that lets you handwrite your equations or mathematical expressions on your screen and have them rendered into their digital equivalent for easy sharing. Render complex mathematical expressions easily using your handwriting with no constraints. The result can be shared as an image or as a LaTeX* or MathML* string for integration in your documents.
This looks like something I could integrate into my workflow.

Mathematical Model Reveals the Patterns of How Innovations Arise | MIT Technology Review

Read Mathematicians have discovered how the universal patterns behind innovation arise (MIT Technology Review)
A mathematical model could lead to a new approach to the study of what is possible, and how it follows from what already exists.
Continue reading Mathematical Model Reveals the Patterns of How Innovations Arise | MIT Technology Review