The Information Universe Conference

"The Information Universe" Conference in The Netherlands in October hits several of the sweet spots for areas involving information theory, physics, the origin of life, complexity, computer science, and microbiology.

Yesterday, via a notification from Lanyard, I came across a notice for the upcoming conference “The Information Universe” which hits several of the sweet spots for areas involving information theory, physics, the origin of life, complexity, computer science, and microbiology. It is scheduled to occur from October 7-9, 2015 at the Infoversum Theater in Groningen, The Netherlands.

I’ll let their site speak for itself below, but they already have an interesting line up of speakers including:

Keynote speakers

  • Erik Verlinde, Professor Theoretical Physics, University of Amsterdam, Netherlands
  • Alex Szalay, Alumni Centennial Professor of Astronomy, The Johns Hopkins University, USA
  • Gerard ‘t Hooft, Professor Theoretical Physics, University of Utrecht, Netherlands
  • Gregory Chaitin, Professor Mathematics and Computer Science, Federal University of Rio de Janeiro, Brasil
  • Charley Lineweaver, Professor Astronomy and Astrophysics, Australian National University, Australia
  • Lude Franke, Professor System Genetics, University Medical Center Groningen, Netherlands
Infoversum Theater, The Netherlands
Infoversum Theater, The Netherlands

Conference synopsis from their homepage:

The main ambition of this conference is to explore the question “What is the role of information in the physics of our Universe?”. This intellectual pursuit may have a key role in improving our understanding of the Universe at a time when we “build technology to acquire and manage Big Data”, “discover highly organized information systems in nature” and “attempt to solve outstanding issues on the role of information in physics”. The conference intends to address the “in vivo” (role of information in nature) and “in vitro” (theory and models) aspects of the Information Universe.

The discussions about the role of information will include the views and thoughts of several disciplines: astronomy, physics, computer science, mathematics, life sciences, quantum computing, and neuroscience. Different scientific communities hold various and sometimes distinct formulations of the role of information in the Universe indicating we still lack understanding of its intrinsic nature. During this conference we will try to identify the right questions, which may lead us towards an answer.

  • Is the universe one big information processing machine?
  • Is there a deeper layer in quantum mechanics?
  • Is the universe a hologram?
  • Is there a deeper physical description of the world based on information?
  • How close/far are we from solving the black hole information paradox?
  • What is the role of information in highly organized complex life systems?
  • The Big Data Universe and the Universe : are our numerical simulations and Big Data repositories (in vitro) different from real natural system (in vivo)?
  • Is this the road to understanding dark matter, dark energy?

The conference will be held in the new 260 seats planetarium theatre in Groningen, which provides an inspiring immersive 3D full dome display, e.g. numerical simulations of the formation of our Universe, and anything else our presenters wish to bring in. The digital planetarium setting will be used to visualize the theme with modern media.

The Information Universe Website

Additional details about the conference including the participants, program, venue, and registration can also be found at their website.

NIMBioS Workshop: Information Theory and Entropy in Biological Systems

Web resources for participants in the NIMBioS Worshop on Information Theory and Entropy in Biological Systems.

Over the next few days, I’ll be maintaining a Storify story covering information related to and coming out of the Information Theory and Entropy Workshop being sponsored by NIMBios at the Unviersity of Tennessee, Knoxville.

For those in attendance or participating by watching the live streaming video (or even watching the video after-the-fact), please feel free to use the official hashtag , and I’ll do my best to include your tweets, posts, and material into the story stream for future reference.

For journal articles and papers mentioned in/at the workshop, I encourage everyone to join the group ITBio: Information Theory, Microbiology, Evolution, and Complexity and add them to the group’s list of papers. Think of it as a collaborative online journal club of sorts.

Those participating in the workshop are also encouraged to take a look at a growing collection of researchers and materials I maintain here. If you have materials or resources you’d like to contribute to the list, please send me an email or include them via the suggestions/submission form or include them in the comments section below.

Resources for Information Theory and Biology

RSS Icon  RSS Feed for BoffoSocko posts tagged with


BIRS Workshop on Biological and Bio-Inspired Information Theory | Storify Stream

Over the span of the coming week, I'll be updating (and archiving) the stream of information coming out of the BIRS Workshop on Biological and Bio-Inspired Information Theory.

Over the span of the coming week, I’ll be updating (and archiving) the stream of information coming out of the BIRS Workshop on Biological and Bio-Inspired Information Theory.

Editor’s note: On 12/12/17 Storify announced they would be shutting down. As a result, I’m changing the embedded version of the original data served by Storify for an HTML copy which can be found below:

BIRS: Biological and Bio-Inspired Information Theory

A 5 Day workshop on Biology and Information Theory hosted by the Banff International Research Station

  1. Wishing I was at the Gene Regulation and Information Theory meeting starting tomorrow  #ITBio
  2. Mathematical and Statistical Models for Genetic Coding starts today.  @andreweckford might borrow attendees for BIRS
  3. Mathematical Foundations for Information Theory in Diffusion-Based Molecular Communications  #ITBio
  4. Bill Bialek giving plenary talk “Information flow & order in real biological networks” at Feb 2014 workshop  #ITBio
  5. #ITBio"/>

    CECAM Workshop: “Entropy in Biomolecular Systems” starts May 14 in Vienna.  #ITBio
  6. Last RT: wonder what the weather is going to be like at the end of October for my @BIRS_Math workshop
  7. @JoVanEvery I’m organizing a workshop in Banff in October … hopefully this isn’t a sign of weather to come!
  8. Banff takes its name from the town of Banff, Scotland, not to be confused with Bamff, also Scotland.
  9. Good morning from beautiful Banff. How can you not love the mountains?

    Good morning from beautiful Banff. How can you not love the mountains?
  10. “Not an obvious connection between utility and information, just as there is no obvious connection between energy and entropy” @BIRS_Math
  11. Last RT: a lot of discussion of my signal transduction work with Peter Thomas.
  12. Live now: Nicolo Michelusi of @USCViterbi on Stochastic Model for Electron Transfer in Bacterial Cables  #ITBio
  13. Nicolo Michelusi (University of Southern California), A Stochastic Model for Electron Transfer in Bacterial Cables 
  14. Listening to the always awesome @cnmirose talk about the ultimate limits of molecular communication.
  15. “Timing is fundamental … subsumes time-varying concentration channel” @cnmirose @BIRS_Math
  16. Standard opening quote of these talks: “I’m not a biologist, but …” @BIRS_Math
  17. Stefan Moser (ETH Zurich), Capacity Bounds of the Memoryless AIGN Channel – a Toy-Model for Molecular Communicat… 
  18. Weisi Guo (University of Warwick), Communication Envelopes for Molecular Diffusion and Electromagnetic Wave Propag… 
  19. .@ChrisAldrich @andreweckford @Storify @BIRS_Math Sounds like a fascinating workshop on bioinformation theory in Banff.
  20. Toby Berger, winner of the 2002 Shannon award, speaking right now. @BIRS_Math
  21. Naftali Tishby (Hebrew University of Jerusalem), Sensing and acting under information constraints – a principled a… 
  22. “…places such as BIRS and the Banff Centre exist to facilitate the exchange and pursuit of knowledge.” S. Sundaram 
  23. We’re going for a hike tomorrow. Many thanks to Lukas at the @ParksCanada info centre in Banff for helpful advice! @BIRS_Math
  24. Alexander Dimitrov (Washington State University), Invariant signal processing in auditory biological systems 
  25. Joel Zylberberg (University of Washington), Communicating with noisy signals: lessons learned from the mammalian v… 
  26. Robert Schober (Universitat Erlangen-Nurnberg), Intersymbol interference mitigation in diffusive molecular communi… 
  27. Rudolf Rabenstein (Friedrich-Alexander-Universitat Erlangen-Nurnberg (FAU)), Modelling Molecular Communication Cha… 
  28. THis week @BIRS_Math ” Biological and Bio-Inspired Information Theory ” @thebanffcentre #biology #math @NSF
  29. “Your theory might match the data, but the data might be wrong” – Crick @BIRS_Math
  30. So information theory seems to be a big deal in ecology. @BIRS_Math
  31. Tom Schneider (National Institutes of Health), Three Principles of Biological States: Ecology and Cancer 
  32. “In biodiversity, the entropy of an ecosystem is the expected … information we gain about an organism by learning its species” @BIRS_Math
  33. Seriously, I’m blown away by this work in information theory in ecology. Huge body of work; I had no idea. @BIRS_Math
  34. I encourage @BIRS_Math attendees at Biological & Bio-Inspired Information Theory to contribute references here: 
  35. Christoph Adami (Michigan State University), Some Information-Theoretic Musings Concerning the Origin and Evolutio… 
  36. #ITBio"/>

    .@ChristophAdami talk Some Information-Theoretic Musings Concerning the Origin of Life @BIRS_Math this morning #ITBio
  37. ICYMI @ChristophAdami had great paper: Information-theoretic Considerations on Origin of Life on arXiv  @BIRS_Math
  38. Baez has a post on Tishby's talk "Sensing &  Acting Under Information Constraints" @BIRS_Math

    Baez has a post on Tishby’s talk “Sensing & Acting Under Information Constraints”  @BIRS_Math
  39. INFORMATION THEORY is the new central ...

    INFORMATION THEORY is the new central …
  40. I’m listening to a talk on the origin of life at a workshop on Biological and Bio-Inspired Information Theory. … 
  41. Now accepting applications for the #Research Collaboration Workshop for Women in #MathBio at NIMBioS 
  42. We removed a faulty microphone from our lecture room this morning. We’re now fixing the audio buzz in this week’s videos, and reposting.
  43. Didn’t get enough information theory & biology this week @BIRS_Math? Apply for NIMBioS workshop in April 2015  #ITBio
  44. Amin Emad (University of Illinois at Urbana-Champaign), Applications of Discrete Mathematics in Bioinformatics 
  45. Paul Bogdan (University of Southern California), Multiscale Analysis Reveals Complex Behavior in Bacteria Populati… 
  46. Lubomir Kostal (Institute of Physiology, Academy of Sciences of the Czech Republic), Efficient information transmi… 
  47. Banff ☀️❄️🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲🌲❤️
  48. @conservativelez I’m a big fan of your dad’s research & was reminded of much of it via a workshop on Biological Information Theory
  49. @conservativelez Though he may not have been able to attend, he can catch most of the talks online if he’d like 
  50. Depressed that @BIRS_Math Workshop on Biological & Bio-Inspired Information Theory is over? Relive it here:  #ITBio
  51. A few thoughts about that workshop while I wait for my flight back to Toronto.
  52. 1/ Everyone I talked to said it was the best workshop they’d ever been to, and they’d like to do a follow-up workshop @BIRS_Math
  53. 2/ There is an amazing diversity of work under the umbrella of “information theory”. @BIRS_Math
  54. 3/ Much of this work is outside the IT mainstream, and an issue is that people use different terms for related concepts. @BIRS_Math
  55. 4/ Some community building is in order. I think this workshop was a good first step. @BIRS_Math
  56. 5/ Many many thanks to @BIRS_Math and huge kudos to @NGhoussoub for excellent service to the Canadian scientific community. BIRS is a gem.
  57. 6/ Also many thanks to the participants for their excellent talks, and to @ChrisAldrich for maintaining a Storify.

Information Theory is the New Central Discipline

Replied to Information Theory is the new central discipline. by Nassim Nicholas Taleb (

INFORMATION THEORY is the new central discipline. This graph was from 20y ago in the seminal book Cover and Thomas, as the field was starting to be defined. Now Information Theory has been expanded to swallow even more fields.

Born in, of all disciplines, Electrical Engineering, the field has progressively infiltrating probability theory, computer science, statistical physics, data science, gambling theory, ruin problems, complexity, even how one deals with knowledge, epistemology. It defines noise/signal, order/disorder, etc. It studies cellular automata. You can use it in theology (FREE WILL & algorithmic complexity). As I said, it is the MOTHER discipline.

I am certain much of Medicine will naturally grow to be a subset of it, both operationally, and in studying how the human body works: the latter is an information machine. Same with linguistics. Same with political “science”, same with… everything.

I am saying this because I figured out what the long 5th volume of the INCERTO will be. Cannot say now with any precision but it has to do with a variant of entropy as the core natural generator of Antifragility.

[Revised to explain that it is not *replacing* other disciplines, just infiltrating them as the point was initially misunderstood…]

Nassim Nicholas Taleb via Facebook

[My comments posted to the original Facebook post follow below.]

I’m coming to this post a bit late as I’m playing a bit of catch up, but agree with it wholeheartedly.

In particular, applications to molecular biology and medicine are really beginning to come to a heavy boil in just the past five years. This particular year is the progenitor of what appears to be the biggest renaissance for the application of information theory to the area of biology since Hubert Yockey, Henry Quastler, and Robert L. Platzman’s “Symposium on Information Theory in Biology at Gatlinburg, Tennessee” in 1956.

Upcoming/recent conferences/workshops on information theory in biology include:

At the beginning of September, Christoph Adami posted an awesome and very sound paper on arXiv entitled “Information-theoretic considerations concerning the origin of life”  which truly portends to turn the science of the origin of life on its head.

I’ll note in passing, for those interested, that Claude Shannon’s infamous master’s thesis at MIT (in which he applied Boolean Algebra to electric circuits allowing the digital revolution to occur) and his subsequent “The Theory of Mathematical Communication” were so revolutionary, nearly everyone forgets his MIT Ph.D. Thesis “An Algebra for Theoretical Genetics” which presaged the areas of cybernetics and the current applications of information theory to microbiology and are probably as seminal as Sir R.A Fisher’s applications of statistics to science in general and biology in particular.

For those commenting on the post who were interested in a layman’s introduction to information theory, I recommend John Robinson Pierce’s An Introduction to Information Theory: Symbols, Signals and Noise (Dover has a very inexpensive edition.) After this, one should take a look at Claude Shannon’s original paper. (The MIT Press printing includes some excellent overview by Warren Weaver along with the paper itself.) The mathematics in the paper really aren’t too technical, and most of it should be comprehensible by most advanced high school students.

For those that don’t understand the concept of entropy, I HIGHLY recommend Arieh Ben-Naim’s book Entropy Demystified The Second Law Reduced to Plain Common Sense with Seven Simulated Games. He really does tear the concept down into its most basic form in a way I haven’t seen others come remotely close to and which even my mother can comprehend (with no mathematics at all).  (I recommend this presentation to even those with Ph.D.’s in physics because it is so truly fundamental.)

For the more advanced mathematicians, physicists, and engineers Arieh Ben-Naim does a truly spectacular job of extending ET Jaynes’ work on information theory and statistical mechanics and comes up with a more coherent mathematical theory to conjoin the entropy of physics/statistical mechanics with that of Shannon’s information theory in A Farewell to Entropy: Statistical Thermodynamics Based on Information.

For the advanced readers/researchers interested in more at the intersection of information theory and biology, I’ll also mention that I maintain a list of references, books, and journal articles in a Mendeley group entitled “ITBio: Information Theory, Microbiology, Evolution, and Complexity.”

Venn Diagram of how information theory relates to other fields.
Figure 1.1 [page 2] from
Thomas M. Cover and Joy Thomas’s textbook Elements of Information Theory, Second Edition
(John Wiley & Sons, Inc., 2006) [First Edition, 1991]

How to Sidestep Mathematical Equations in Popular Science Books

In the publishing industry there is a general rule-of-thumb that every mathematical equation included in a book will cut the audience of science books written for a popular audience in half – presumably in a geometric progression. This typically means that including even a handful of equations will give you an effective readership of zero – something no author and certainly no editor or publisher wants.

I suspect that there is a corollary to this that every picture included in the text will help to increase your readership, though possibly not by as proportionally a large amount.

In any case, while reading Melanie Mitchell’s text Complexity: A Guided Tour [Cambridge University Press, 2009] this weekend, I noticed that, in what appears to be a concerted effort to include an equation without technically writing it into the text and to simultaneously increase readership by including a picture, she cleverly used a picture of Boltzmann’s tombstone in Vienna! Most fans of thermodynamics will immediately recognize Boltzmann’s equation for entropy, S = k log W , which appears engraved on the tombstone over his bust.

Page 51 of Melanie Mitchell's book "Complexity: A Guided Tour"
Page 51 of Melanie Mitchell’s book “Complexity: A Guided Tour” featuring Boltzmann’s tombstone in Vienna.

I hope that future mathematicians, scientists, and engineers will keep this in mind and have their tombstones engraved with key formulae to assist future authors in doing the same – hopefully this will help to increase the amount of mathematics that is deemed “acceptable” by the general public.

Book Review: John Avery’s “Information Theory and Evolution”

Information Theory and Evolution Book Cover Information Theory and Evolution
John Avery
Non-fiction, Popular Science
World Scientific
January 1, 2003

This highly interdisciplinary book discusses the phenomenon of life, including its origin and evolution (and also human cultural evolution), against the background of thermodynamics, statistical mechanics, and information theory. Among the central themes is the seeming contradiction between the second law of thermodynamics and the high degree of order and complexity produced by living systems. This paradox has its resolution in the information content of the Gibbs free energy that enters the biosphere from outside sources, as the author shows. The role of information in human cultural evolution is another focus of the book. One of the final chapters discusses the merging of information technology and biotechnology into a new discipline — bio-information technology.

Information Theory and EvolutionInformation Theory and Evolution by John Avery
My rating: 3 of 5 stars

This is a fantastic book which, for the majority of people, I’d give a five star review. For my own purposes, however, I was expecting far more on the theoretical side of information theory and statistical mechanics as applied to microbiology that it didn’t live up to, so I’m giving it three stars from a purely personal perspective.

I do wish that someone had placed it in my hands and forced me to read it when I was a freshman in college entering the study of biomedical and electrical engineering. It is far more an impressive book at this level and for those in the general public who are interested in the general history of science and philosophy of the topics. The general reader may be somewhat scared by a small amount of mathematics in chapter 4, but there is really no loss of continuity by skimming through most of it. For those looking for a bit more rigor, Avery provides some additional details in appendix A, but for the specialist, the presentation is heavily lacking.

The book opens with a facile but acceptable overview of the history of the development for the theory of evolution whereas most other texts would simply begin with Darwin’s work and completely skip the important philosophical and scientific contributions of Aristotle, Averroes, Condorcet, Linnaeus, Erasmus Darwin, Lamarck, or the debates between Cuvier and St. Hilaire.

For me, the meat of the book was chapters 3-5 and appendix A which collectively covered molecular biology, evolution, statistical mechanics, and a bit of information theory, albeit from a very big picture point of view. Unfortunately the rigor of the presentation and the underlying mathematics were skimmed over all too quickly to accomplish what I had hoped to gain from the text. On the other hand, the individual sections of “suggestions for further reading” throughout the book seem well researched and offer an acceptable launching pad for delving into topics in places where they may be covered more thoroughly.

The final several chapters become a bit more of an overview of philosophy surrounding cultural evolution and information technology which are much better covered and discussed in James Gleick’s recent book The Information.

Overall, Avery has a well laid out outline of the broad array of subjects and covers it all fairly well in an easy to read and engaging style.

View all my reviews

Reading Progress
  • Started book on 07/11/11
  • Finished book on 08/14//11
Bookmarked Information Theory and Statistical Mechanics by E. T. Jaynes (Physical Review, 106, 620 – Published 15 May 1957)

Information theory provides a constructive criterion for setting up probability distributions on the basis of partial knowledge, and leads to a type of statistical inference which is called the maximum-entropy estimate. It is the least biased estimate possible on the given information; i.e., it is maximally noncommittal with regard to missing information. If one considers statistical mechanics as a form of statistical inference rather than as a physical theory, it is found that the usual computational rules, starting with the determination of the partition function, are an immediate consequence of the maximum-entropy principle. In the resulting "subjective statistical mechanics," the usual rules are thus justified independently of any physical argument, and in particular independently of experimental verification; whether or not the results agree with experiment, they still represent the best estimates that could have been made on the basis of the information available.

It is concluded that statistical mechanics need not be regarded as a physical theory dependent for its validity on the truth of additional assumptions not contained in the laws of mechanics (such as ergodicity, metric transitivity, equal a priori probabilities, etc.). Furthermore, it is possible to maintain a sharp distinction between its physical and statistical aspects. The former consists only of the correct enumeration of the states of a system and their properties; the latter is a straightforward example of statistical inference.


Global classical solutions of the Boltzmann equation with long-range interactions

Bookmarked Global classical solutions of the Boltzmann equation with long-range interactions (

Finally, after 140 years, Robert Strain and Philip Gressman at the University of Pennsylvania have found a mathematical proof of Boltzmann’s equation, which predicts the motion of gas molecules.


This is a brief announcement of our recent proof of global existence and rapid decay to equilibrium of classical solutions to the Boltzmann equation without any angular cutoff, that is, for long-range interactions. We consider perturbations of the Maxwellian equilibrium states and include the physical cross-sections arising from an inverse-power intermolecular potential r-(p-1) with p > 2, and more generally. We present here a mathematical framework for unique global in time solutions for all of these potentials. We consider it remarkable that this equation, derived by Boltzmann (1) in 1872 and Maxwell (2) in 1867, grants a basic example where a range of geometric fractional derivatives occur in a physical model of the natural world. Our methods provide a new understanding of the effects due to grazing collisions.