Free E-Book: Neural Networks and Deep Learning by Michael Nielsen

Bookmarked Neural networks and deep learning (neuralnetworksanddeeplearning.com)
Michael A. Nielsen, the author of one of our favorite books on Quantum Computation and Quantum Information, is writing a new book entitled Neural Networks and Deep Learning. He’s been releasing portions of it for free on the internet in draft form every two or three months since 2013. He’s also maintaining an open code repository for the book on GitHub.

Michael A. Nielsen
Michael A. Nielsen

The Postdoctoral Experience (Revisited)

Bookmarked The Postdoctoral Experience Revisited (2014) (The National Academies Press)
The Postdoctoral Experience Revisited builds on the 2000 report Enhancing the Postdoctoral Experience for Scientists and Engineers. That ground-breaking report assessed the postdoctoral experience and provided principles, action points, and recommendations to enhance that experience. Since the publication of the 2000 report, the postdoctoral landscape has changed considerably. The percentage of PhDs who pursue postdoctoral training is growing steadily and spreading from the biomedical and physical sciences to engineering and the social sciences. The average length of time spent in postdoctoral positions seems to be increasing. The Postdoctoral Experience Revisited reexamines postdoctoral programs in the United States, focusing on how postdocs are being guided and managed, how institutional practices have changed, and what happens to postdocs after they complete their programs. This book explores important changes that have occurred in postdoctoral practices and the research ecosystem and assesses how well current practices meet the needs of these fledgling scientists and engineers and of the research enterprise. The Postdoctoral Experience Revisited takes a fresh look at current postdoctoral fellows - how many there are, where they are working, in what fields, and for how many years. This book makes recommendations to improve aspects of programs - postdoctoral period of service, title and role, career development, compensation and benefits, and mentoring. Current data on demographics, career aspirations, and career outcomes for postdocs are limited. This report makes the case for better data collection by research institution and data sharing. A larger goal of this study is not only to propose ways to make the postdoctoral system better for the postdoctoral researchers themselves but also to better understand the role that postdoctoral training plays in the research enterprise. It is also to ask whether there are alternative ways to satisfy some of the research and career development needs of postdoctoral researchers that are now being met with several years of advanced training. Postdoctoral researchers are the future of the research enterprise. The discussion and recommendations of The Postdoctoral Experience Revisited will stimulate action toward clarifying the role of postdoctoral researchers and improving their status and experience.

The National Academy of Sciences has published a (free) book: The Postdoctoral Experience (Revisited) discussing where we’re at and some ideas for a way forward.

Most might agree that our educational system is far less than ideal, but few pay attention to significant problems at the highest levels of academia which are holding back a great deal of our national “innovation machinery”. The National Academy of Sciences has published a (free) book: The Postdoctoral Experience (Revisited) discussing where we’re at and some ideas for a way forward. There are some interesting ideas here, but we’ve still got a long way to go.

Book cover of The Postdoctoral Experience Revisited (2014)
The Postdoctoral Experience Revisited (2014) | National Academies Press

2014 Fields Medal and Nevanlinna Prize Winners Announced

The 2014 Fields Medal and Nevanlinna Prize winners were announced yesterday.

General announcement

Nature: “Iranian is first woman to nab highest prize in maths”
Also includes coverage of the Gauss Prize for research that has had an impact outside mathematics, which was awarded to Stanley Osher of the University of California at Los Angeles.)

Great personal profiles with short videos via Quanta Magazine

Artur AvilaA Brazilian Wunderkind Who Calms Chaos

Manjul BhargavaThe Musical, Magical Number Theorist

Martin HairerIn Noisy Equations, One Who Heard Music

Maryam MirzakhaniA Tenacious Explorer of Abstract Surfaces

Subhash KhotA Grand Vision for the Impossible

Technical explanation of their work

Terry Tao (previous Fields Medal Winner): Avila, Bhargava, Hairer, Mirzakhani

 

 

Read Vocabulary Study with Mnemosyne by Chris Francese (Dickinson College Commentaries)
Learning any language involves acquiring a large amount of vocabulary. For this reason, I think it is very useful for Latin and Greek students to put time and effort into systematic vocabulary study.
I’ve added a copy of the DCC Core Latin Vocabulary to the Anki platform for those interested in utilizing it there instead of on Mnemosyne. The cards can be found/downloaded at: https://ankiweb.net/shared/info/1342288910. My personal thanks to the DCC for posting and sharing the results of their research and work in this manner. This is a brilliant example of the concept of digital humanities.

Academy of Motion Picture Arts & Sciences study on The Digital Dilemma

With a slight nod toward the Academy’s announcements of the Oscar nominees this morning, there’s something more interesting which they’ve recently released which hasn’t gotten nearly as much press, but portends to be much more vital in the long run.

Academy_awards

As books enter the digital age and we watch the continued convergence of rich media like video and audio enter into e-book formats with announcements last week like Apple’s foray into digital publishing, the ability to catalog, maintain and store many types of digital media is becoming an increasing problem.  Last week the Academy released part two of their study on strategic issues in archiving and accessing digital motion picture materials in their report entitled The Digital Dilemma 2. Many of you will find it interesting/useful, particularly in light of the Academy’s description

The Digital Dilemma 2 reports on digital preservation issues facing communities that do not have the resources of large corporations or other well-funded institutions: independent filmmakers, documentarians and nonprofit audiovisual archives.

Clicking on the image of the report below provides some additional information as well as the ability (with a simple login) to download a .pdf copy of their entire report.

Digitaldilemma

There is also a recent Variety article which gives a more fully fleshed out overview of many of the issues at hand.

In the meanwhile, if you’re going to make a bet in this year’s Oscar pool, perhaps putting your money on the “Digital Dilemma” might be more useful than on Brad Pitt for Best Actor in “Moneyball”?

Mathematics in Popular Science Books | The Economist

Reposted Big bang (The Economist)
Popular physics has enjoyed a new-found regard. Now comes a brave attempt to inject mathematics into an otherwise fashionable subject
This review of Brian Cox and Jeff Forshaw’s forthcoming book The Quantum Universe: Everything That Can Happen Does Happen sounds intriguing. I’m highly impressed that so much of the review focuses on the author’s decision to include a more mathematical treatment of their subject for what is supposed to be a popular science book. I always wish books like these at least had the temerity to include much more in the way of the mathematical underpinnings of their subjects; I’m glad that the popular press (or at least The Economist in this case) is willing to be asking for the mathematics as well. Hopefully it will mark a broader trend in popular books on scientific topics!

Fundamental physics

Big bang

Popular physics has enjoyed a new-found regard. Now comes a brave attempt to inject mathematics into an otherwise fashionable subject

Nov 5th 2011 | from the print edition

The Quantum Universe: Everything That Can Happen Does Happen. By Brian Cox and Jeff Forshaw. Allen Lane; 255 pages; £20. To be published in America in January by Da Capo Press; $25.

PREVIOUSLY the preserve of dusty, tweed-jacketed academics, physics has enjoyed a surprising popular renaissance over the past few years. In America Michio Kaku, a string theorist, has penned several successful books and wowed television and radio audiences with his presentations on esoteric subjects such as the existence of wormholes and the possibility of alien life. In Britain Brian Cox, a former pop star whose music helped propel Tony Blair to power, has become the front man for physics, which recently regained its status as a popular subject in British classrooms, an effect many attribute to Mr Cox’s astonishing appeal.

Mr Cox, a particle physicist, is well-known as the presenter of two BBC television series that have attracted millions of viewers (a third series will be aired next year) and as a bestselling author and public speaker. His latest book, “The Quantum Universe”, which he co-wrote with Jeff Forshaw of the University of Manchester, breaks the rules of popular science-writing that were established over two decades ago by Stephen Hawking, who launched the modern genre with his famous book, “A Brief History of Time”.

Mr Hawking’s literary success was ascribed to his eschewing equations. One of his editors warned him that sales of the book would be halved by every equation he included; Mr Hawking inserted just one, E=mc2, and, even then, the volume acquired a sorry reputation for being bought but not read. By contrast, Mr Cox, whose previous book with Mr Forshaw investigated “Why does E=mc2?” (2009), has bravely sloshed a generous slug of mathematics throughout his texts.

The difficulties in explaining physics without using maths are longstanding. Einstein mused, “The eternal mystery of the world is its comprehensibility,” and “the fact that it is comprehensible is a miracle.” Yet the language in which the world is described is that of maths, a relatively sound grasp of which is needed to comprehend the difficulties that physicists are trying to resolve as well as the possible solutions. Mr Cox has secured a large fan base with his boyish good looks, his happy turns of phrase and his knack for presenting complex ideas using simple analogies. He also admirably shies away from dumbing down. “The Quantum Universe” is not a dry undergraduate text book, but nor is it a particularly easy read.

The subject matter is hard. Quantum mechanics, which describes in subatomic detail a shadowy world in which cats can be simultaneously alive and dead, is notoriously difficult to grasp. Its experiments yield bizarre results that can be explained only by embracing the maths that describe them, and its theories make outrageous predictions (such as the existence of antimatter) that have nevertheless later been verified. Messrs Cox and Forshaw say they have included the maths “mainly because it allows us to really explain why things are the way they are. Without it, we should have to resort to the physicist-guru mentality whereby we pluck profundities out of thin air, and neither author would be comfortable with guru status.”

That stance might comfort the authors, but to many readers they will nonetheless seem to pluck equations out of thin air. Yet their decision to include some of the hard stuff leaves open the possibility that some readers might actually engage in the slog that leads to higher pleasures. For non-sloggers alternative routes are offered: Messrs Cox and Forshaw use clockfaces to illustrate how particles interact with one another, a drawing of how guitar strings twang and a photograph of a vibrating drum. A diagram, rather than an equation, is used to explain one promising theory of how matter acquires mass, a question that experiments on the Large Hadron Collider at CERN, the European particle-physics laboratory near Geneva, will hopefully soon answer.

The authors have wisely chosen to leaven their tome with amusing tales of dysfunctional characters among scholars who developed quantum mechanics in the 1920s and beyond, as well as with accounts of the philosophical struggles with which they grappled and the occasional earthy aside. Where the subject matter is a trifle dull, Messrs Cox and Forshaw acknowledge it: of Heinrich Kayser, who a century ago completed a six-volume reference book documenting the spectral lines generated by every known element, they observe, “He must have been great fun at dinner parties.” And they make some sweeping generalisations about their colleagues who pore over equations, “Physicists are very lazy, and they would not go to all this trouble unless it saved time in the long run.”

Whether or not readers of “The Quantum Universe” will follow all the maths, the authors’ love for their subject shines through the book. “There is no better demonstration of the power of the scientific method than quantum theory,” they write. That may be so, but physicists all over the world, Messrs Cox and Forshaw included, are longing for the next breakthrough that will supersede the claim. Hopes are pinned on experiments currently under way at CERN that may force physicists to rethink their understanding of the universe, and inspire Messrs Cox and Forshaw to write their next book—equations and all.

from the print edition | Books and arts

Bookmarked Information Theory and Statistical Mechanics by E. T. Jaynes (Physical Review, 106, 620 – Published 15 May 1957)

Information theory provides a constructive criterion for setting up probability distributions on the basis of partial knowledge, and leads to a type of statistical inference which is called the maximum-entropy estimate. It is the least biased estimate possible on the given information; i.e., it is maximally noncommittal with regard to missing information. If one considers statistical mechanics as a form of statistical inference rather than as a physical theory, it is found that the usual computational rules, starting with the determination of the partition function, are an immediate consequence of the maximum-entropy principle. In the resulting "subjective statistical mechanics," the usual rules are thus justified independently of any physical argument, and in particular independently of experimental verification; whether or not the results agree with experiment, they still represent the best estimates that could have been made on the basis of the information available.

It is concluded that statistical mechanics need not be regarded as a physical theory dependent for its validity on the truth of additional assumptions not contained in the laws of mechanics (such as ergodicity, metric transitivity, equal a priori probabilities, etc.). Furthermore, it is possible to maintain a sharp distinction between its physical and statistical aspects. The former consists only of the correct enumeration of the states of a system and their properties; the latter is a straightforward example of statistical inference.

DOI:https://doi.org/10.1103/PhysRev.106.620

Darwin Library, Now Online, Reveals Mind of 19th-Century Naturalist | The Chronicle

Bookmarked Darwin Library, Now Online, Reveals Mind of 19th-Century Naturalist by Jie Jenny Zou (The Chronicle of Higher Education)

A portion of Charles Darwin’s vast scientific library—including handwritten notes that the 19-century English naturalist scribbled in the margins of his books—has been digitized and is available online. Readers can now get a firsthand look into the mind of the man behind the theory of evolution.

The project to digitize Darwin’s extensive library, which includes 1,480 scientific books, was a joint effort with the University of Cambridge, the Darwin Manuscripts Project at the American Museum of Natural History, the Natural History Museum in Britain, and the Biodiversity Heritage Library.

The digital library, which includes 330 of the most heavily annotated books in the collection, is fully indexed—allowing readers to search through transcriptions of the naturalist’s handwritten notes that were compiled by the Darwin scholars Mario A. Di Gregorio and Nick Gill in 1990.

Charles Darwin’s Library from the Biodiversity Heritage Library

Entropy Is Universal Rule of Language | Wired Science

Read Entropy Is Universal Rule of Language by Lisa Grossman (Wired)
The amount of information carried in the arrangement of words is the same across all languages, even languages that aren't related to each other. This consistency could hint at a single common ancestral language, or universal features of how human brains process speech. "It doesn't matter what language or style you take," said systems biologist…
The research this article is based on is quite interesting for those doing language research.

Barnes & Noble Board Would Face Tough Choices in a Buyout Vote | Dealbook

Read Barnes & Noble Faces Tough Choices in a Buyout Vote by Steven Davidoff Solomon (DealBook)
If Leonard Riggio, Barnes & Noble's chairman, joins Liberty Media's proposed buyout of his company, the board needs to decide how to handle his 30 percent stake before shareholders vote on the deal.
This story from the New York Times’ Dealbook is a good quick read on some of the details and machinations of the Barnes & Noble buyout. Perhaps additional analysis on it from a game theoretical viewpoint would yield new insight?

The Science of Why We Don’t Believe Science | Mother Jones

Read The Science of Why We Don't Believe Science by Chris Mooney (Mother Jones)
How our brains fool us on climate, creationism, and the vaccine-autism link.
This is a fantastic article that everyone should read and take some serious time to absorb!
Bookmarked Selective pressures on genomes in molecular evolution by Charles Ofria, Christoph Adami, Travis C. Collier (arXiv.org, 15 Jan 2003)
We describe the evolution of macromolecules as an information transmission process and apply tools from Shannon information theory to it. This allows us to isolate three independent, competing selective pressures that we term compression, transmission, and neutrality selection. The first two affect genome length: the pressure to conserve resources by compressing the code, and the pressure to acquire additional information that improves the channel, increasing the rate of information transmission into each offspring. Noisy transmission channels (replication with mutations) gives rise to a third pressure that acts on the actual encoding of information; it maximizes the fraction of mutations that are neutral with respect to the phenotype. This neutrality selection has important implications for the evolution of evolvability. We demonstrate each selective pressure in experiments with digital organisms.
To be published in J. theor. Biology 222 (2003) 477-483
DOI: 10.1016/S0022-5193(03)00062-6

Synthetic Biology’s Hunt for the Genetic Transistor | IEEE Spectrum

Read Synthetic Biology's Hunt for the Genetic Transistor (spectrum.ieee.org)
How genetic circuits will unlock the true potential of bioengineering 
This is a great short article on bioengineering and synthetic biology written for the layperson. It’s also one of the best crash courses I’ve read on genetics in a while.

IPTV primer: an overview of the fusion of TV and the Internet | Ars Technica

Read IPTV primer: an overview of the fusion of TV and the Internet by Iljitsch Van Beijnum (Ars Technica)

Profound as it may be, the Internet revolution still pales in comparison to that earlier revolution that first brought screens in millions of homes: the TV revolution. Americans still spend more of their non-sleep, non-work time on watching TV than on any other activity. And now the immovable object (the couch potato) and the irresistible force (the business-model destroying Internet) are colliding.

For decades, the limitations of technology only allowed viewers to watch TV programs as they were broadcast. Although limiting, this way of watching TV has the benefit of simplicity: the viewer only has to turn on the set and select a channel. They then get to see what was deemed broadcast-worthy at that particular time. This is the exact opposite of the Web, where users type a search query or click a link and get their content whenever they want. Unsurprisingly, TV over the Internet, a combination that adds Web-like instant gratification to the TV experience, has seen an enormous growth in popularity since broadband became fast enough to deliver decent quality video. So is the Internet going to wreck TV, or is TV going to wreck the Internet? Arguments can certainly be made either way.

This brief overview of IPTV is about as concise as they get. It’s recommended for entertainment executives who need to get caught up on the space as well as for people who are contemplating “cutting the cable cord.” There’s still a lot of improvement the area can use…